These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 29650969

  • 1. AKAPs-PKA disruptors increase AQP2 activity independently of vasopressin in a model of nephrogenic diabetes insipidus.
    Ando F, Mori S, Yui N, Morimoto T, Nomura N, Sohara E, Rai T, Sasaki S, Kondo Y, Kagechika H, Uchida S.
    Nat Commun; 2018 Apr 12; 9(1):1411. PubMed ID: 29650969
    [Abstract] [Full Text] [Related]

  • 2. Activation of AQP2 water channels by protein kinase A: therapeutic strategies for congenital nephrogenic diabetes insipidus.
    Ando F.
    Clin Exp Nephrol; 2021 Oct 12; 25(10):1051-1056. PubMed ID: 34224008
    [Abstract] [Full Text] [Related]

  • 3. Effect of the cGMP pathway on AQP2 expression and translocation: potential implications for nephrogenic diabetes insipidus.
    Boone M, Kortenoeven M, Robben JH, Deen PM.
    Nephrol Dial Transplant; 2010 Jan 12; 25(1):48-54. PubMed ID: 19666909
    [Abstract] [Full Text] [Related]

  • 4. Psychotropic drugs upregulate aquaporin-2 via vasopressin-2 receptor/cAMP/protein kinase A signaling in inner medullary collecting duct cells.
    Kim S, Jo CH, Kim GH.
    Am J Physiol Renal Physiol; 2021 May 01; 320(5):F963-F971. PubMed ID: 33843270
    [Abstract] [Full Text] [Related]

  • 5. Regulation of aquaporin-2 trafficking.
    Nedvetsky PI, Tamma G, Beulshausen S, Valenti G, Rosenthal W, Klussmann E.
    Handb Exp Pharmacol; 2009 May 01; (190):133-57. PubMed ID: 19096775
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Genetic deletion of the nuclear factor of activated T cells 5 in collecting duct principal cells causes nephrogenic diabetes insipidus.
    Petrillo F, Chernyakov D, Esteva-Font C, Poulsen SB, Edemir B, Fenton RA.
    FASEB J; 2022 Nov 01; 36(11):e22583. PubMed ID: 36197017
    [Abstract] [Full Text] [Related]

  • 8. Activation of AQP2 water channels without vasopressin: therapeutic strategies for congenital nephrogenic diabetes insipidus.
    Ando F, Uchida S.
    Clin Exp Nephrol; 2018 Jun 01; 22(3):501-507. PubMed ID: 29478202
    [Abstract] [Full Text] [Related]

  • 9. Integrin-linked kinase regulates tubular aquaporin-2 content and intracellular location: a link between the extracellular matrix and water reabsorption.
    Cano-Peñalver JL, Griera M, Serrano I, Rodríguez-Puyol D, Dedhar S, de Frutos S, Rodríguez-Puyol M.
    FASEB J; 2014 Aug 01; 28(8):3645-59. PubMed ID: 24784577
    [Abstract] [Full Text] [Related]

  • 10. Characterization of three vasopressin receptor 2 variants: an apparent polymorphism (V266A) and two loss-of-function mutations (R181C and M311V).
    Armstrong SP, Seeber RM, Ayoub MA, Feldman BJ, Pfleger KD.
    PLoS One; 2013 Aug 01; 8(6):e65885. PubMed ID: 23762448
    [Abstract] [Full Text] [Related]

  • 11. Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus.
    Olesen ET, Rützler MR, Moeller HB, Praetorius HA, Fenton RA.
    Proc Natl Acad Sci U S A; 2011 Aug 02; 108(31):12949-54. PubMed ID: 21768374
    [Abstract] [Full Text] [Related]

  • 12. Wnt5a induces renal AQP2 expression by activating calcineurin signalling pathway.
    Ando F, Sohara E, Morimoto T, Yui N, Nomura N, Kikuchi E, Takahashi D, Mori T, Vandewalle A, Rai T, Sasaki S, Kondo Y, Uchida S.
    Nat Commun; 2016 Nov 28; 7():13636. PubMed ID: 27892464
    [Abstract] [Full Text] [Related]

  • 13. Pathogenesis and treatment of autosomal-dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation.
    Sohara E, Rai T, Yang SS, Uchida K, Nitta K, Horita S, Ohno M, Harada A, Sasaki S, Uchida S.
    Proc Natl Acad Sci U S A; 2006 Sep 19; 103(38):14217-22. PubMed ID: 16968783
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Nephrogenic diabetes insipidus in mice caused by deleting COOH-terminal tail of aquaporin-2.
    Shi PP, Cao XR, Qu J, Volk KA, Kirby P, Williamson RA, Stokes JB, Yang B.
    Am J Physiol Renal Physiol; 2007 May 19; 292(5):F1334-44. PubMed ID: 17229678
    [Abstract] [Full Text] [Related]

  • 16. Physiological insights into novel therapies for nephrogenic diabetes insipidus.
    Sands JM, Klein JD.
    Am J Physiol Renal Physiol; 2016 Dec 01; 311(6):F1149-F1152. PubMed ID: 27534996
    [Abstract] [Full Text] [Related]

  • 17. New autosomal recessive mutations in aquaporin-2 causing nephrogenic diabetes insipidus through deficient targeting display normal expression in Xenopus oocytes.
    Leduc-Nadeau A, Lussier Y, Arthus MF, Lonergan M, Martinez-Aguayo A, Riveira-Munoz E, Devuyst O, Bissonnette P, Bichet DG.
    J Physiol; 2010 Jun 15; 588(Pt 12):2205-18. PubMed ID: 20403973
    [Abstract] [Full Text] [Related]

  • 18. Hereditary Nephrogenic Diabetes Insipidus: Pathophysiology and Possible Treatment. An Update.
    Milano S, Carmosino M, Gerbino A, Svelto M, Procino G.
    Int J Mol Sci; 2017 Nov 10; 18(11):. PubMed ID: 29125546
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Nephrogenic diabetes insipidus.
    Bichet DG.
    Adv Chronic Kidney Dis; 2006 Apr 10; 13(2):96-104. PubMed ID: 16580609
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.