These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


255 related items for PubMed ID: 29651660

  • 21. RNA Sequencing and Co-expressed Long Non-coding RNA in Modern and Wild Wheats.
    Cagirici HB, Alptekin B, Budak H.
    Sci Rep; 2017 Sep 06; 7(1):10670. PubMed ID: 28878329
    [Abstract] [Full Text] [Related]

  • 22. Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.).
    Yıldırım K, Kaya Z.
    Plant Physiol Biochem; 2017 Jun 06; 115():183-199. PubMed ID: 28376411
    [Abstract] [Full Text] [Related]

  • 23. Heat stress transcripts, differential expression, and profiling of heat stress tolerant gene TaHsp90 in Indian wheat (Triticum aestivum L.) cv C306.
    Vishwakarma H, Junaid A, Manjhi J, Singh GP, Gaikwad K, Padaria JC.
    PLoS One; 2018 Jun 06; 13(6):e0198293. PubMed ID: 29939987
    [Abstract] [Full Text] [Related]

  • 24. Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes.
    Cohen D, Bogeat-Triboulot MB, Tisserant E, Balzergue S, Martin-Magniette ML, Lelandais G, Ningre N, Renou JP, Tamby JP, Le Thiec D, Hummel I.
    BMC Genomics; 2010 Nov 12; 11():630. PubMed ID: 21073700
    [Abstract] [Full Text] [Related]

  • 25. Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat.
    Tomar RS, Tiwari S, Vinod, Naik BK, Chand S, Deshmukh R, Mallick N, Singh S, Singh NK, Tomar SM.
    PLoS One; 2016 Nov 12; 11(6):e0156528. PubMed ID: 27280445
    [Abstract] [Full Text] [Related]

  • 26. The role of salicylic acid in modulating phenotyping in spring wheat varieties for mitigating drought stress.
    Awadalla RA, Sallam A, Börner A, Elshamy MM, Heikal YM.
    BMC Plant Biol; 2024 Oct 11; 24(1):948. PubMed ID: 39394092
    [Abstract] [Full Text] [Related]

  • 27. Genotypic variation in drought stress response and subsequent recovery of wheat (Triticum aestivum L.).
    Vassileva V, Signarbieux C, Anders I, Feller U.
    J Plant Res; 2011 Jan 11; 124(1):147-54. PubMed ID: 20502935
    [Abstract] [Full Text] [Related]

  • 28. Isolation and molecular characterization of ERF1, an ethylene response factor gene from durum wheat (Triticum turgidum L. subsp. durum), potentially involved in salt-stress responses.
    Makhloufi E, Yousfi FE, Marande W, Mila I, Hanana M, Bergès H, Mzid R, Bouzayen M.
    J Exp Bot; 2014 Dec 11; 65(22):6359-71. PubMed ID: 25205575
    [Abstract] [Full Text] [Related]

  • 29. Transcriptome pathways unique to dehydration tolerant relatives of modern wheat.
    Ergen NZ, Thimmapuram J, Bohnert HJ, Budak H.
    Funct Integr Genomics; 2009 Aug 11; 9(3):377-96. PubMed ID: 19330365
    [Abstract] [Full Text] [Related]

  • 30. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage.
    Cheah BH, Nadarajah K, Divate MD, Wickneswari R.
    BMC Genomics; 2015 Sep 15; 16(1):692. PubMed ID: 26369665
    [Abstract] [Full Text] [Related]

  • 31. Root transcriptome profiling of contrasting wheat genotypes provides an insight to their adaptive strategies to water deficit.
    Mia MS, Liu H, Wang X, Zhang C, Yan G.
    Sci Rep; 2020 Mar 17; 10(1):4854. PubMed ID: 32184417
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Proteomic analysis of wheat contrasting genotypes reveals the interplay between primary metabolic and regulatory pathways in anthers under drought stress.
    Mehri N, Fotovat R, Mirzaei M, Fard EM, Parsamatin P, Hasan MT, Wu Y, Ghaffari MR, Salekdeh GH.
    J Proteomics; 2020 Aug 30; 226():103895. PubMed ID: 32652220
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Transcriptional profiling of the leaves of near-isogenic rice lines with contrasting drought tolerance at the reproductive stage in response to water deficit.
    Moumeni A, Satoh K, Venuprasad R, Serraj R, Kumar A, Leung H, Kikuchi S.
    BMC Genomics; 2015 Dec 29; 16():1110. PubMed ID: 26715311
    [Abstract] [Full Text] [Related]

  • 38. Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency.
    Xue GP, McIntyre CL, Chapman S, Bower NI, Way H, Reverter A, Clarke B, Shorter R.
    Plant Mol Biol; 2006 Aug 29; 61(6):863-81. PubMed ID: 16927201
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.