These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
235 related items for PubMed ID: 29654290
41. Involvement of gshAB in the interspecies competition within oral biofilm. Zheng X, Zhang K, Zhou X, Liu C, Li M, Li Y, Wang R, Li Y, Li J, Shi W, Xu X. J Dent Res; 2013 Sep; 92(9):819-24. PubMed ID: 23872989 [Abstract] [Full Text] [Related]
42. Withania somnifera attenuates acid production, acid tolerance and extra-cellular polysaccharide formation of Streptococcus mutans biofilms. Pandit S, Song KY, Jeon JG. Am J Chin Med; 2014 Sep; 42(1):157-71. PubMed ID: 24467542 [Abstract] [Full Text] [Related]
43. Antibacterial Effect of Caffeic Acid Phenethyl Ester on Cariogenic Bacteria and Streptococcus mutans Biofilms. Niu Y, Wang K, Zheng S, Wang Y, Ren Q, Li H, Ding L, Li W, Zhang L. Antimicrob Agents Chemother; 2020 Aug 20; 64(9):. PubMed ID: 32540977 [Abstract] [Full Text] [Related]
44. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation. Wu CC, Lin CT, Wu CY, Peng WS, Lee MJ, Tsai YC. Mol Oral Microbiol; 2015 Feb 20; 30(1):16-26. PubMed ID: 24961744 [Abstract] [Full Text] [Related]
45. Anti-Biofilm Activities of Chinese Poplar Propolis Essential Oil against Streptococcus mutans. Yuan J, Yuan W, Guo Y, Wu Q, Wang F, Xuan H. Nutrients; 2022 Aug 11; 14(16):. PubMed ID: 36014799 [Abstract] [Full Text] [Related]
46. Clotrimazole and econazole inhibit Streptococcus mutans biofilm and virulence in vitro. Qiu W, Ren B, Dai H, Zhang L, Zhang Q, Zhou X, Li Y. Arch Oral Biol; 2017 Jan 11; 73():113-120. PubMed ID: 27764679 [Abstract] [Full Text] [Related]
48. RgpF Is Required for Maintenance of Stress Tolerance and Virulence in Streptococcus mutans. Kovacs CJ, Faustoferri RC, Quivey RG. J Bacteriol; 2017 Dec 15; 199(24):. PubMed ID: 28924033 [Abstract] [Full Text] [Related]
49. Targeting glucosyltransferases to combat dental caries: Current perspectives and future prospects. Atta L, Mushtaq M, Siddiqui AR, Khalid A, Ul-Haq Z. Int J Biol Macromol; 2024 Oct 15; 278(Pt 2):134645. PubMed ID: 39128764 [Abstract] [Full Text] [Related]
50. l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms. He J, Hwang G, Liu Y, Gao L, Kilpatrick-Liverman L, Santarpia P, Zhou X, Koo H. J Bacteriol; 2016 Oct 01; 198(19):2651-61. PubMed ID: 27161116 [Abstract] [Full Text] [Related]
51. Effects of combined oleic acid and fluoride at sub-MIC levels on EPS formation and viability of Streptococcus mutans UA159 biofilms. Cai JN, Kim MA, Jung JE, Pandit S, Song KY, Jeon JG. Biofouling; 2015 Oct 01; 31(7):555-63. PubMed ID: 26293974 [Abstract] [Full Text] [Related]
52. Effect of Veillonella parvula on the physiological activity of Streptococcus mutans. Liu S, Chen M, Wang Y, Zhou X, Peng X, Ren B, Li M, Cheng L. Arch Oral Biol; 2020 Jan 01; 109():104578. PubMed ID: 31589997 [Abstract] [Full Text] [Related]
53. Novel antibiofilm chemotherapy targets exopolysaccharide synthesis and stress tolerance in Streptococcus mutans to modulate virulence expression in vivo. Falsetta ML, Klein MI, Lemos JA, Silva BB, Agidi S, Scott-Anne KK, Koo H. Antimicrob Agents Chemother; 2012 Dec 01; 56(12):6201-11. PubMed ID: 22985885 [Abstract] [Full Text] [Related]
54. Veillonella parvula acts as a pathobiont promoting the biofilm virulence and cariogenicity of Streptococcus mutans in adult severe caries. Wei Y, Zhang Y, Zhuang Y, Tang Y, Nie H, Haung Y, Liu T, Yang W, Yan F, Zhu Y. Microbiol Spectr; 2024 Nov 05; 12(11):e0431823. PubMed ID: 39345197 [Abstract] [Full Text] [Related]
55. Comparison of glucan-binding proteins in cariogenicity of Streptococcus mutans. Matsumoto-Nakano M, Fujita K, Ooshima T. Oral Microbiol Immunol; 2007 Feb 05; 22(1):30-5. PubMed ID: 17241168 [Abstract] [Full Text] [Related]
56. Deficiency of BrpA in Streptococcus mutans reduces virulence in rat caries model. Wen ZT, Scott-Anne K, Liao S, De A, Luo M, Kovacs C, Narvaez BS, Faustoferri RC, Yu Q, Taylor CM, Quivey RG. Mol Oral Microbiol; 2018 Oct 05; 33(5):353-363. PubMed ID: 29888871 [Abstract] [Full Text] [Related]
57. Additive attenuation of virulence and cariogenic potential of Streptococcus mutans by simultaneous inactivation of the ComCDE quorum-sensing system and HK/RR11 two-component regulatory system. Li YH, Tian XL, Layton G, Norgaard C, Sisson G. Microbiology (Reading); 2008 Nov 05; 154(Pt 11):3256-3265. PubMed ID: 18957580 [Abstract] [Full Text] [Related]
58. Progress of Antimicrobial Discovery Against the Major Cariogenic Pathogen Streptococcus mutans. Cui T, Luo W, Xu L, Yang B, Zhao W, Cang H. Curr Issues Mol Biol; 2019 Nov 05; 32():601-644. PubMed ID: 31166181 [Abstract] [Full Text] [Related]
59. Pleiotropic Regulation of Virulence Genes in Streptococcus mutans by the Conserved Small Protein SprV. Shankar M, Hossain MS, Biswas I. J Bacteriol; 2017 Apr 15; 199(8):. PubMed ID: 28167518 [Abstract] [Full Text] [Related]
60. Inhibitory effects of polysaccharides on the cariogenic activities of Streptococcus mutans. Yano A, Konno N, Imai S, Kato H. Biosci Biotechnol Biochem; 2012 Apr 15; 76(12):2313-6. PubMed ID: 23221692 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]