These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


193 related items for PubMed ID: 29661017

  • 1. A novel orange-colored bimolecular fluorescence complementation (BiFC) assay using monomeric Kusabira-Orange protein.
    Fujii Y, Yoshimura A, Kodama Y.
    Biotechniques; 2018 Apr; 64(4):153-161. PubMed ID: 29661017
    [Abstract] [Full Text] [Related]

  • 2. Visualization of molecular interactions using bimolecular fluorescence complementation analysis: characteristics of protein fragment complementation.
    Kerppola TK.
    Chem Soc Rev; 2009 Oct; 38(10):2876-86. PubMed ID: 19771334
    [Abstract] [Full Text] [Related]

  • 3. Bimolecular Fluorescence Complementation with Improved Gateway-Compatible Vectors to Visualize Protein-Protein Interactions in Plant Cells.
    Goto-Yamada S, Hikino K, Nishimura M, Nakagawa T, Mano S.
    Methods Mol Biol; 2018 Oct; 1794():245-258. PubMed ID: 29855962
    [Abstract] [Full Text] [Related]

  • 4. Multicolor bimolecular fluorescence complementation (BiFC) analysis of protein interactions with alternative partners.
    Kerppola TK.
    Cold Spring Harb Protoc; 2013 Sep 01; 2013(9):798-803. PubMed ID: 24003202
    [Abstract] [Full Text] [Related]

  • 5. Bimolecular Fluorescence Complementation to Visualize Protein-Protein Interactions in Human Cells Based on Gateway Cloning Technology.
    Lepur A, Vugrek O.
    Methods Mol Biol; 2018 Sep 01; 1794():259-267. PubMed ID: 29855963
    [Abstract] [Full Text] [Related]

  • 6. New Gateway-compatible vectors for a high-throughput protein-protein interaction analysis by a bimolecular fluorescence complementation (BiFC) assay in plants and their application to a plant clathrin structure analysis.
    Nishimura K, Ishikawa S, Matsunami E, Yamauchi J, Homma K, Faulkner C, Oparka K, Jisaka M, Nagaya T, Yokota K, Nakagawa T.
    Biosci Biotechnol Biochem; 2015 Sep 01; 79(12):1995-2006. PubMed ID: 26193449
    [Abstract] [Full Text] [Related]

  • 7. An improved mRFP1 adds red to bimolecular fluorescence complementation.
    Jach G, Pesch M, Richter K, Frings S, Uhrig JF.
    Nat Methods; 2006 Aug 01; 3(8):597-600. PubMed ID: 16862132
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Bimolecular fluorescence complementation (BiFC) analysis of protein interactions in Caenorhabditis elegans.
    Hiatt SM, Shyu YJ, Duren HM, Hu CD.
    Methods; 2008 Jul 01; 45(3):185-91. PubMed ID: 18586101
    [Abstract] [Full Text] [Related]

  • 10. Protein-Protein Interactions Visualized by Bimolecular Fluorescence Complementation in Arabidopsis thaliana Protoplasts from Leaf.
    Jayasree A, Salava H, Nodzynski T, Thula S.
    Methods Mol Biol; 2024 Jul 01; 2787():305-313. PubMed ID: 38656499
    [Abstract] [Full Text] [Related]

  • 11. An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio.
    Kodama Y, Hu CD.
    Biotechniques; 2010 Nov 01; 49(5):793-805. PubMed ID: 21091444
    [Abstract] [Full Text] [Related]

  • 12. A novel pair of split venus fragments to detect protein-protein interactions by in vitro and in vivo bimolecular fluorescence complementation assays.
    Ohashi K, Mizuno K.
    Methods Mol Biol; 2014 Nov 01; 1174():247-62. PubMed ID: 24947387
    [Abstract] [Full Text] [Related]

  • 13. Bimolecular Fluorescence Complementation (BiFC) Assay to Visualize Protein-Protein Interactions in Living Cells.
    Gnanasekaran P, Pappu HR.
    Methods Mol Biol; 2023 Nov 01; 2690():117-120. PubMed ID: 37450142
    [Abstract] [Full Text] [Related]

  • 14. Localizing protein-protein interactions by bimolecular fluorescence complementation in planta.
    Citovsky V, Gafni Y, Tzfira T.
    Methods; 2008 Jul 01; 45(3):196-206. PubMed ID: 18586107
    [Abstract] [Full Text] [Related]

  • 15. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions.
    Shyu YJ, Liu H, Deng X, Hu CD.
    Biotechniques; 2006 Jan 01; 40(1):61-6. PubMed ID: 16454041
    [Abstract] [Full Text] [Related]

  • 16. A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions.
    Chu J, Zhang Z, Zheng Y, Yang J, Qin L, Lu J, Huang ZL, Zeng S, Luo Q.
    Biosens Bioelectron; 2009 Sep 15; 25(1):234-9. PubMed ID: 19596565
    [Abstract] [Full Text] [Related]

  • 17. Visualization of RMRs (Receptor Membrane RING-H2) Dimerization in Nicotiana benthamiana Leaves Using a Bimolecular Fluorescence Complementation (BiFC) Assay.
    Occhialini A.
    Methods Mol Biol; 2018 Sep 15; 1789():177-194. PubMed ID: 29916080
    [Abstract] [Full Text] [Related]

  • 18. Improvement of a Venus-based bimolecular fluorescence complementation assay to visualize bFos-bJun interaction in living cells.
    Nakagawa C, Inahata K, Nishimura S, Sugimoto K.
    Biosci Biotechnol Biochem; 2011 Sep 15; 75(7):1399-401. PubMed ID: 21737916
    [Abstract] [Full Text] [Related]

  • 19. Live Cell Visualization of Multiple Protein-Protein Interactions with BiFC Rainbow.
    Wang S, Ding M, Xue B, Hou Y, Sun Y.
    ACS Chem Biol; 2018 May 18; 13(5):1180-1188. PubMed ID: 29283249
    [Abstract] [Full Text] [Related]

  • 20. Simultaneous visualization of multiple protein interactions using multicolor bimolecular fluorescence complementation (BiFC) analysis.
    Kerppola TK.
    Cold Spring Harb Protoc; 2013 Sep 01; 2013(9):892-5. PubMed ID: 24003203
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.