These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


665 related items for PubMed ID: 2966734

  • 21. [Molecular interactions of membrane proteins and erythrocyte deformability].
    Boivin P.
    Pathol Biol (Paris); 1984 Jun; 32(6):717-35. PubMed ID: 6235477
    [Abstract] [Full Text] [Related]

  • 22. LANCL1, an erythrocyte protein recruited to the Maurer's clefts during Plasmodium falciparum development.
    Blisnick T, Vincensini L, Barale JC, Namane A, Braun Breton C.
    Mol Biochem Parasitol; 2005 May; 141(1):39-47. PubMed ID: 15811525
    [Abstract] [Full Text] [Related]

  • 23. Band 3 clustering promotes the exposure of neoantigens in Plasmodium falciparum-infected erythrocytes.
    Winograd E, Prudhomme JG, Sherman IW.
    Mol Biochem Parasitol; 2005 Jul; 142(1):98-105. PubMed ID: 15907563
    [Abstract] [Full Text] [Related]

  • 24. Vesicle-mediated transport of membrane and proteins in malaria-infected erythrocytes.
    Barnwell JW.
    Blood Cells; 1990 Jul; 16(2-3):379-95. PubMed ID: 2257319
    [Abstract] [Full Text] [Related]

  • 25. Ultrastructure of malaria-infected erythrocytes.
    Atkinson CT, Aikawa M.
    Blood Cells; 1990 Jul; 16(2-3):351-68. PubMed ID: 2257318
    [Abstract] [Full Text] [Related]

  • 26. [Contribution of immunochemical methods to the study of human red-cell membrane proteins (author's transl)].
    Garbarz M, Dhermy D, Boivin P.
    Pathol Biol (Paris); 1982 Feb; 30(2):109-16. PubMed ID: 6211648
    [Abstract] [Full Text] [Related]

  • 27. Skeleton binding protein 1 (SBP1) of Plasmodium falciparum accumulates in electron-dense material before passing through the parasitophorous vacuole membrane.
    Iriko H, Ishino T, Tachibana M, Omoda A, Torii M, Tsuboi T.
    Parasitol Int; 2020 Apr; 75():102003. PubMed ID: 31669509
    [Abstract] [Full Text] [Related]

  • 28. Receptor mediated endocytosis of the malarial parasite by erythrocytes.
    Perkins ME.
    Prog Clin Biol Res; 1984 Apr; 165():361-76. PubMed ID: 6390454
    [Abstract] [Full Text] [Related]

  • 29. Localization of protective 143/140 kDa antigens of Plasmodium knowlesi by the use of antibodies and ultracryomicrotomy.
    Aikawa M, David P, Fine E, Hudson D, Klotz F, Miller LH.
    Eur J Cell Biol; 1986 Aug; 41(2):207-13. PubMed ID: 3758082
    [Abstract] [Full Text] [Related]

  • 30. Characterisation of Plasmodium falciparum RESA-like protein peptides that bind specifically to erythrocytes and inhibit invasion.
    Rodriguez LE, Vera R, Valbuena J, Curtidor H, Garcia J, Puentes A, Ocampo M, Lopez R, Rosas J, Lopez Y, Patarroyo MA, Patarroyo ME.
    Biol Chem; 2007 Jan; 388(1):15-24. PubMed ID: 17214545
    [Abstract] [Full Text] [Related]

  • 31. Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum-infected erythrocyte.
    Külzer S, Rug M, Brinkmann K, Cannon P, Cowman A, Lingelbach K, Blatch GL, Maier AG, Przyborski JM.
    Cell Microbiol; 2010 Oct; 12(10):1398-420. PubMed ID: 20482550
    [Abstract] [Full Text] [Related]

  • 32. Ankyrin and synapsin: spectrin-binding proteins associated with brain membranes.
    Bennett V, Baines AJ, Davis JQ.
    J Cell Biochem; 1985 Oct; 29(2):157-69. PubMed ID: 2933418
    [Abstract] [Full Text] [Related]

  • 33. Plasmodium falciparum: protein localization along a novel, lipid-rich tubovesicular membrane network in infected erythrocytes.
    Behari R, Haldar K.
    Exp Parasitol; 1994 Nov; 79(3):250-9. PubMed ID: 7957747
    [Abstract] [Full Text] [Related]

  • 34. PEXEL-independent trafficking of Plasmodium falciparum SURFIN4.2 to the parasite-infected red blood cell and Maurer's clefts.
    Alexandre JS, Yahata K, Kawai S, Torii M, Kaneko O.
    Parasitol Int; 2011 Sep; 60(3):313-20. PubMed ID: 21616162
    [Abstract] [Full Text] [Related]

  • 35. Novel Plasmodium falciparum Maurer's clefts protein families implicated in the release of infectious merozoites.
    Mbengue A, Audiger N, Vialla E, Dubremetz JF, Braun-Breton C.
    Mol Microbiol; 2013 Apr; 88(2):425-42. PubMed ID: 23517413
    [Abstract] [Full Text] [Related]

  • 36. The parasitophorous vacuole membrane of Plasmodium falciparum: demonstration of vesicle formation using an immunoprobe.
    Kara UA, Stenzel DJ, Ingram LT, Kidson C.
    Eur J Cell Biol; 1988 Apr; 46(1):9-17. PubMed ID: 3294009
    [Abstract] [Full Text] [Related]

  • 37. A 3D view of the host cell compartment in P. falciparum-infected erythrocytes.
    Tilley L, Hanssen E.
    Transfus Clin Biol; 2008 Apr; 15(1-2):72-81. PubMed ID: 18501653
    [Abstract] [Full Text] [Related]

  • 38. Trafficking of STEVOR to the Maurer's clefts in Plasmodium falciparum-infected erythrocytes.
    Przyborski JM, Miller SK, Pfahler JM, Henrich PP, Rohrbach P, Crabb BS, Lanzer M.
    EMBO J; 2005 Jul 06; 24(13):2306-17. PubMed ID: 15961998
    [Abstract] [Full Text] [Related]

  • 39. Protein transport across the parasitophorous vacuole of Plasmodium falciparum: into the great wide open.
    Charpian S, Przyborski JM.
    Traffic; 2008 Feb 06; 9(2):157-65. PubMed ID: 17944805
    [Abstract] [Full Text] [Related]

  • 40. The Maurer's clefts of Plasmodium falciparum: parasite-induced islands within an intracellular ocean.
    Przyborski JM.
    Trends Parasitol; 2008 Jul 06; 24(7):285-8. PubMed ID: 18514031
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 34.