These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
388 related items for PubMed ID: 29670965
21. A CO monolayer: first-principles design of a new direct band-gap semiconductor with excellent mechanical properties. Teng ZW, Liu CS, Yan XH. Nanoscale; 2017 May 04; 9(17):5445-5450. PubMed ID: 28177026 [Abstract] [Full Text] [Related]
22. Strain Effects on the Electronic and Optical Properties of Blue Phosphorene. Zhang L, Cui Z. Front Chem; 2022 May 04; 10():951870. PubMed ID: 35873045 [Abstract] [Full Text] [Related]
23. Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. Dai J, Zeng XC. J Phys Chem Lett; 2014 Apr 03; 5(7):1289-93. PubMed ID: 26274486 [Abstract] [Full Text] [Related]
24. GeP3: A Small Indirect Band Gap 2D Crystal with High Carrier Mobility and Strong Interlayer Quantum Confinement. Jing Y, Ma Y, Li Y, Heine T. Nano Lett; 2017 Mar 08; 17(3):1833-1838. PubMed ID: 28125237 [Abstract] [Full Text] [Related]
25. Theoretical Study of the Ternary Compound Monolayer CuP2Se for Photocatalytic Water Splitting with Efficient Optical Absorption. Qiu X, Wang X, Liu X, Yuan S, Han K, Yang H. Chemistry; 2024 Jun 12; 30(33):e202400348. PubMed ID: 38602023 [Abstract] [Full Text] [Related]
26. Role of Interlayer Coupling on the Evolution of Band Edges in Few-Layer Phosphorene. Wang V, Liu YC, Kawazoe Y, Geng WT. J Phys Chem Lett; 2015 Dec 17; 6(24):4876-83. PubMed ID: 26582362 [Abstract] [Full Text] [Related]
27. P3Cl2: A Unique Post-Phosphorene 2D Material with Superior Properties against Oxidation. Lu N, Zhuo Z, Wang Y, Guo H, Fa W, Wu X, Zeng XC. J Phys Chem Lett; 2018 Nov 15; 9(22):6568-6575. PubMed ID: 30380870 [Abstract] [Full Text] [Related]
28. Band Gap Modulated by Electronic Superlattice in Blue Phosphorene. Zhuang J, Liu C, Gao Q, Liu Y, Feng H, Xu X, Wang J, Zhao J, Dou SX, Hu Z, Du Y. ACS Nano; 2018 May 22; 12(5):5059-5065. PubMed ID: 29741870 [Abstract] [Full Text] [Related]
29. Light-Matter Interactions in Phosphorene. Lu J, Yang J, Carvalho A, Liu H, Lu Y, Sow CH. Acc Chem Res; 2016 Sep 20; 49(9):1806-15. PubMed ID: 27589013 [Abstract] [Full Text] [Related]
30. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Ye PD. ACS Nano; 2014 Apr 22; 8(4):4033-41. PubMed ID: 24655084 [Abstract] [Full Text] [Related]
31. Proximity Effect Induced Spin Injection in Phosphorene on Magnetic Insulator. Chen H, Li B, Yang J. ACS Appl Mater Interfaces; 2017 Nov 08; 9(44):38999-39010. PubMed ID: 29035031 [Abstract] [Full Text] [Related]
32. First-principles prediction of two atomic-thin phosphorene allotropes with potentials for sun-light-driven water splitting. Jiao N, Zhou P, Xue L, He C, Sun L. J Phys Condens Matter; 2019 Feb 20; 31(7):075702. PubMed ID: 30530949 [Abstract] [Full Text] [Related]
33. Monolayer CS as a metal-free photocatalyst with high carrier mobility and tunable band structure: a first-principles study. Yang XL, Ye XJ, Liu CS, Yan XH. J Phys Condens Matter; 2018 Feb 14; 30(6):065701. PubMed ID: 29292700 [Abstract] [Full Text] [Related]
34. DFT coupled with NEGF study of a promising two-dimensional channel material: black phosphorene-type GaTeCl. Zhou W, Guo S, Zhang S, Zhu Z, Song X, Niu T, Zhang K, Liu X, Zou Y, Zeng H. Nanoscale; 2018 Feb 15; 10(7):3350-3355. PubMed ID: 29387855 [Abstract] [Full Text] [Related]
35. Modifying electronic and optical properties of violet phosphorus through variable fluorine coverage. Wang S, Liu X, Zhang Y, Li S, Bo X, Wei L, Niu W, Wu H, Pu Y, Li F. J Comput Chem; 2024 Jul 30; 45(20):1737-1743. PubMed ID: 38622788 [Abstract] [Full Text] [Related]
36. Layer-dependent band alignment and work function of few-layer phosphorene. Cai Y, Zhang G, Zhang YW. Sci Rep; 2014 Oct 20; 4():6677. PubMed ID: 25327586 [Abstract] [Full Text] [Related]
37. Electronic and optical properties of a Janus SnSSe monolayer: effects of strain and electric field. Nguyen HTT, Tuan VV, Nguyen CV, Phuc HV, Tong HD, Nguyen ST, Hieu NN. Phys Chem Chem Phys; 2020 May 28; 22(20):11637-11643. PubMed ID: 32406452 [Abstract] [Full Text] [Related]
38. Strain-Tunable Electronic Properties and Band Alignments in GaTe/C2N Heterostructure: a First-Principles Calculation. Li XH, Wang BJ, Cai XL, Yu WY, Zhu YY, Li FY, Fan RX, Zhang YS, Ke SH. Nanoscale Res Lett; 2018 Sep 26; 13(1):300. PubMed ID: 30259233 [Abstract] [Full Text] [Related]
39. Size and strain tunable band alignment of black-blue phosphorene lateral heterostructures. Li Y, Ma F. Phys Chem Chem Phys; 2017 May 17; 19(19):12466-12472. PubMed ID: 28470311 [Abstract] [Full Text] [Related]
40. Mechanical, electronic and optical properties of a novel B2P6 monolayer: ultrahigh carrier mobility and strong optical absorption. Ren K, Shu H, Huo W, Cui Z, Yu J, Xu Y. Phys Chem Chem Phys; 2021 Nov 10; 23(43):24915-24921. PubMed ID: 34726209 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]