These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


579 related items for PubMed ID: 29673955

  • 1. Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering.
    He X, Fan X, Feng W, Chen Y, Guo T, Wang F, Liu J, Tang K.
    Int J Biol Macromol; 2018 Aug; 115():385-392. PubMed ID: 29673955
    [Abstract] [Full Text] [Related]

  • 2. A porous collagen-carboxymethyl cellulose/hydroxyapatite composite for bone tissue engineering by bi-molecular template method.
    He X, Tang K, Li X, Wang F, Liu J, Zou F, Yang M, Li M.
    Int J Biol Macromol; 2019 Sep 15; 137():45-53. PubMed ID: 31220495
    [Abstract] [Full Text] [Related]

  • 3. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering.
    Zhang J, Nie J, Zhang Q, Li Y, Wang Z, Hu Q.
    J Biomater Sci Polym Ed; 2014 Sep 15; 25(1):61-74. PubMed ID: 24053536
    [Abstract] [Full Text] [Related]

  • 4. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S, Karami-Pour A, Oryan A, Talaei-Khozani T.
    Mater Sci Eng C Mater Biol Appl; 2019 Nov 15; 104():109960. PubMed ID: 31500051
    [Abstract] [Full Text] [Related]

  • 5. Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering.
    Shaheen TI, Montaser AS, Li S.
    Int J Biol Macromol; 2019 Jan 15; 121():814-821. PubMed ID: 30342123
    [Abstract] [Full Text] [Related]

  • 6. Porous collagen-hydroxyapatite scaffolds with mesenchymal stem cells for bone regeneration.
    Ning L, Malmström H, Ren YF.
    J Oral Implantol; 2015 Feb 15; 41(1):45-9. PubMed ID: 23574526
    [Abstract] [Full Text] [Related]

  • 7. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering.
    Lu HT, Lu TW, Chen CH, Mi FL.
    Int J Biol Macromol; 2019 May 01; 128():973-984. PubMed ID: 30738901
    [Abstract] [Full Text] [Related]

  • 8. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D, Zhang Z, Zheng C, Zhao B, Sun K, Nian Z, Zhang X, Li R, Li H.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar 01; 30(3):292-7. PubMed ID: 27281872
    [Abstract] [Full Text] [Related]

  • 9. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix.
    Cholas R, Kunjalukkal Padmanabhan S, Gervaso F, Udayan G, Monaco G, Sannino A, Licciulli A.
    Mater Sci Eng C Mater Biol Appl; 2016 Jun 01; 63():499-505. PubMed ID: 27040244
    [Abstract] [Full Text] [Related]

  • 10. Rheological, biocompatibility and osteogenesis assessment of fish collagen scaffold for bone tissue engineering.
    Elango J, Zhang J, Bao B, Palaniyandi K, Wang S, Wenhui W, Robinson JS.
    Int J Biol Macromol; 2016 Oct 01; 91():51-9. PubMed ID: 27211297
    [Abstract] [Full Text] [Related]

  • 11. 3D porous collagen/functionalized multiwalled carbon nanotube/chitosan/hydroxyapatite composite scaffolds for bone tissue engineering.
    Türk S, Altınsoy I, Çelebi Efe G, Ipek M, Özacar M, Bindal C.
    Mater Sci Eng C Mater Biol Appl; 2018 Nov 01; 92():757-768. PubMed ID: 30184804
    [Abstract] [Full Text] [Related]

  • 12. Development and evaluation of cross-linked collagen-hydroxyapatite scaffolds for tissue engineering.
    Panda NN, Jonnalagadda S, Pramanik K.
    J Biomater Sci Polym Ed; 2013 Nov 01; 24(18):2031-44. PubMed ID: 23905722
    [Abstract] [Full Text] [Related]

  • 13. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.
    Park M, Lee D, Shin S, Hyun J.
    Colloids Surf B Biointerfaces; 2015 Jun 01; 130():222-8. PubMed ID: 25910635
    [Abstract] [Full Text] [Related]

  • 14. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering.
    Kim JH, Kim DK, Lee OJ, Ju HW, Lee JM, Moon BM, Park HJ, Kim DW, Lee JH, Park CH.
    Int J Biol Macromol; 2016 Jan 01; 82():160-7. PubMed ID: 26257379
    [Abstract] [Full Text] [Related]

  • 15. Biomimetic collagen-hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique.
    Antebi B, Cheng X, Harris JN, Gower LB, Chen XD, Ling J.
    Tissue Eng Part C Methods; 2013 Jul 01; 19(7):487-96. PubMed ID: 23157544
    [Abstract] [Full Text] [Related]

  • 16. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.
    Xie L, Yu H, Yang W, Zhu Z, Yue L.
    J Biomater Sci Polym Ed; 2016 Jul 01; 27(6):505-28. PubMed ID: 26873015
    [Abstract] [Full Text] [Related]

  • 17. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G, Khan AS, Delaine-Smith RM, Reilly GC, Rehman IU.
    J Mech Behav Biomed Mater; 2014 Nov 01; 39():95-110. PubMed ID: 25117379
    [Abstract] [Full Text] [Related]

  • 18. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C, Su P, Chen X, Meng Y, Yu W, Xiang AP, Wang Y.
    Biomaterials; 2011 Feb 01; 32(4):1051-8. PubMed ID: 20980051
    [Abstract] [Full Text] [Related]

  • 19. Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: Physicochemical, mechanical and in vivo evaluations.
    El-Fiqi A, Kim JH, Kim HW.
    Mater Sci Eng C Mater Biol Appl; 2020 May 01; 110():110660. PubMed ID: 32204088
    [Abstract] [Full Text] [Related]

  • 20. Development of nanocomposite scaffolds based on TiO2 doped in grafted chitosan/hydroxyapatite by freeze drying method and evaluation of biocompatibility.
    Abd-Khorsand S, Saber-Samandari S, Saber-Samandari S.
    Int J Biol Macromol; 2017 Aug 01; 101():51-58. PubMed ID: 28315764
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.