These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
247 related items for PubMed ID: 29674125
1. Deciphering the role of dimer interface in intrinsic dynamics and allosteric pathways underlying the functional transformation of DNMT3A. Liang Z, Hu J, Yan W, Jiang H, Hu G, Luo C. Biochim Biophys Acta Gen Subj; 2018 Jul; 1862(7):1667-1679. PubMed ID: 29674125 [Abstract] [Full Text] [Related]
2. Dnmt3b Methylates DNA by a Noncooperative Mechanism, and Its Activity Is Unaffected by Manipulations at the Predicted Dimer Interface. Norvil AB, Petell CJ, Alabdi L, Wu L, Rossie S, Gowher H. Biochemistry; 2018 Jul 24; 57(29):4312-4324. PubMed ID: 27768276 [Abstract] [Full Text] [Related]
3. Chromatin-dependent allosteric regulation of DNMT3A activity by MeCP2. Rajavelu A, Lungu C, Emperle M, Dukatz M, Bröhm A, Broche J, Hanelt I, Parsa E, Schiffers S, Karnik R, Meissner A, Carell T, Rathert P, Jurkowska RZ, Jeltsch A. Nucleic Acids Res; 2018 Sep 28; 46(17):9044-9056. PubMed ID: 30102379 [Abstract] [Full Text] [Related]
4. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X. Nature; 2007 Sep 13; 449(7159):248-51. PubMed ID: 17713477 [Abstract] [Full Text] [Related]
5. Structural basis for DNMT3A-mediated de novo DNA methylation. Zhang ZM, Lu R, Wang P, Yu Y, Chen D, Gao L, Liu S, Ji D, Rothbart SB, Wang Y, Wang GG, Song J. Nature; 2018 Feb 15; 554(7692):387-391. PubMed ID: 29414941 [Abstract] [Full Text] [Related]
6. Exploring Molecular Mechanisms of Paradoxical Activation in the BRAF Kinase Dimers: Atomistic Simulations of Conformational Dynamics and Modeling of Allosteric Communication Networks and Signaling Pathways. Tse A, Verkhivker GM. PLoS One; 2016 Feb 15; 11(11):e0166583. PubMed ID: 27861609 [Abstract] [Full Text] [Related]
7. Insights into Conformational Dynamics and Allostery in DNMT1-H3Ub/USP7 Interactions. Zhu Y, Ye F, Zhou Z, Liu W, Liang Z, Hu G. Molecules; 2021 Aug 25; 26(17):. PubMed ID: 34500587 [Abstract] [Full Text] [Related]
8. Open interface and large quaternary structure movements in 3D domain swapped proteins: insights from molecular dynamics simulations of the C-terminal swapped dimer of ribonuclease A. Merlino A, Ceruso MA, Vitagliano L, Mazzarella L. Biophys J; 2005 Mar 25; 88(3):2003-12. PubMed ID: 15596505 [Abstract] [Full Text] [Related]
9. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication. Stetz G, Verkhivker GM. PLoS Comput Biol; 2017 Jan 25; 13(1):e1005299. PubMed ID: 28095400 [Abstract] [Full Text] [Related]
10. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Guo X, Wang L, Li J, Ding Z, Xiao J, Yin X, He S, Shi P, Dong L, Li G, Tian C, Wang J, Cong Y, Xu Y. Nature; 2015 Jan 29; 517(7536):640-4. PubMed ID: 25383530 [Abstract] [Full Text] [Related]
11. Coupling between global dynamics and signal transduction pathways: a mechanism of allostery for chaperonin GroEL. Chennubhotla C, Yang Z, Bahar I. Mol Biosyst; 2008 Apr 29; 4(4):287-92. PubMed ID: 18354781 [Abstract] [Full Text] [Related]
12. Identification of potential allosteric communication pathways between functional sites of the bacterial ribosome by graph and elastic network models. Guzel P, Kurkcuoglu O. Biochim Biophys Acta Gen Subj; 2017 Dec 29; 1861(12):3131-3141. PubMed ID: 28917952 [Abstract] [Full Text] [Related]
13. Structure-based network analysis of activation mechanisms in the ErbB family of receptor tyrosine kinases: the regulatory spine residues are global mediators of structural stability and allosteric interactions. James KA, Verkhivker GM. PLoS One; 2014 Dec 29; 9(11):e113488. PubMed ID: 25427151 [Abstract] [Full Text] [Related]
14. Folding funnels and conformational transitions via hinge-bending motions. Kumar S, Ma B, Tsai CJ, Wolfson H, Nussinov R. Cell Biochem Biophys; 1999 Dec 29; 31(2):141-64. PubMed ID: 10593256 [Abstract] [Full Text] [Related]
15. Structural basis for impairment of DNA methylation by the DNMT3A R882H mutation. Anteneh H, Fang J, Song J. Nat Commun; 2020 May 08; 11(1):2294. PubMed ID: 32385248 [Abstract] [Full Text] [Related]
16. The R882H substitution in the human de novo DNA methyltransferase DNMT3A disrupts allosteric regulation by the tumor supressor p53. Sandoval JE, Reich NO. J Biol Chem; 2019 Nov 29; 294(48):18207-18219. PubMed ID: 31640986 [Abstract] [Full Text] [Related]
17. Both intra and inter-domain interactions define the intrinsic dynamics and allosteric mechanism in DNMT1s. Liang Z, Zhu Y, Long J, Ye F, Hu G. Comput Struct Biotechnol J; 2020 Nov 29; 18():749-764. PubMed ID: 32280430 [Abstract] [Full Text] [Related]
18. Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle. Tehver R, Chen J, Thirumalai D. J Mol Biol; 2009 Mar 27; 387(2):390-406. PubMed ID: 19121324 [Abstract] [Full Text] [Related]
19. The R882H DNMT3A hot spot mutation stabilizes the formation of large DNMT3A oligomers with low DNA methyltransferase activity. Nguyen TV, Yao S, Wang Y, Rolfe A, Selvaraj A, Darman R, Ke J, Warmuth M, Smith PG, Larsen NA, Yu L, Zhu P, Fekkes P, Vaillancourt FH, Bolduc DM. J Biol Chem; 2019 Nov 08; 294(45):16966-16977. PubMed ID: 31582562 [Abstract] [Full Text] [Related]
20. Dancing through Life: Molecular Dynamics Simulations and Network-Centric Modeling of Allosteric Mechanisms in Hsp70 and Hsp110 Chaperone Proteins. Stetz G, Verkhivker GM. PLoS One; 2015 Nov 08; 10(11):e0143752. PubMed ID: 26619280 [Abstract] [Full Text] [Related] Page: [Next] [New Search]