These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
291 related items for PubMed ID: 29674318
1. Nicotiana benthamiana α-galactosidase A1.1 can functionally complement human α-galactosidase A deficiency associated with Fabry disease. Kytidou K, Beekwilder J, Artola M, van Meel E, Wilbers RHP, Moolenaar GF, Goosen N, Ferraz MJ, Katzy R, Voskamp P, Florea BI, Hokke CH, Overkleeft HS, Schots A, Bosch D, Pannu N, Aerts JMFG. J Biol Chem; 2018 Jun 29; 293(26):10042-10058. PubMed ID: 29674318 [Abstract] [Full Text] [Related]
2. Human Alpha Galactosidases Transiently Produced in Nicotiana benthamiana Leaves: New Insights in Substrate Specificities with Relevance for Fabry Disease. Kytidou K, Beenakker TJM, Westerhof LB, Hokke CH, Moolenaar GF, Goosen N, Mirzaian M, Ferraz MJ, de Geus M, Kallemeijn WW, Overkleeft HS, Boot RG, Schots A, Bosch D, Aerts JMFG. Front Plant Sci; 2017 Jun 29; 8():1026. PubMed ID: 28680430 [Abstract] [Full Text] [Related]
3. Synergy between the pharmacological chaperone 1-deoxygalactonojirimycin and the human recombinant alpha-galactosidase A in cultured fibroblasts from patients with Fabry disease. Porto C, Pisani A, Rosa M, Acampora E, Avolio V, Tuzzi MR, Visciano B, Gagliardo C, Materazzi S, la Marca G, Andria G, Parenti G. J Inherit Metab Dis; 2012 May 29; 35(3):513-20. PubMed ID: 22187137 [Abstract] [Full Text] [Related]
8. Reduced glucosylceramide in the mouse model of Fabry disease: correction by successful enzyme replacement therapy. Quinta R, Rodrigues D, Assunção M, Macedo MF, Azevedo O, Cunha D, Oliveira P, Sá Miranda MC. Gene; 2014 Feb 15; 536(1):97-104. PubMed ID: 24334116 [Abstract] [Full Text] [Related]
10. A simple method for quantification of plasma globotriaosylsphingosine: Utility for Fabry disease. Talbot A, Nicholls K, Fletcher JM, Fuller M. Mol Genet Metab; 2017 Sep 15; 122(1-2):121-125. PubMed ID: 28847675 [Abstract] [Full Text] [Related]
11. ZFN-mediated in vivo gene editing in hepatocytes leads to supraphysiologic α-Gal A activity and effective substrate reduction in Fabry mice. Pagant S, Huston MW, Moreira L, Gan L, St Martin S, Sproul S, Holmes MC, Meyer K, Wechsler T, Desnick RJ, Yasuda M. Mol Ther; 2021 Nov 03; 29(11):3230-3242. PubMed ID: 33775910 [Abstract] [Full Text] [Related]
12. Globotriaosylsphingosine accumulation and not alpha-galactosidase-A deficiency causes endothelial dysfunction in Fabry disease. Namdar M, Gebhard C, Studiger R, Shi Y, Mocharla P, Schmied C, Brugada P, Lüscher TF, Camici GG. PLoS One; 2012 Nov 03; 7(4):e36373. PubMed ID: 22558451 [Abstract] [Full Text] [Related]
13. Precision medicine in Fabry disease. Lenders M, Brand E. Nephrol Dial Transplant; 2021 Jun 22; 36(Suppl 2):14-23. PubMed ID: 34153986 [Abstract] [Full Text] [Related]
14. A comprehensive testing algorithm for the diagnosis of Fabry disease in males and females. Stiles AR, Zhang H, Dai J, McCaw P, Beasley J, Rehder C, Koeberl DD, McDonald M, Bali DS, Young SP. Mol Genet Metab; 2020 Jul 22; 130(3):209-214. PubMed ID: 32418857 [Abstract] [Full Text] [Related]
15. Molecular basis of 1-deoxygalactonojirimycin arylthiourea binding to human α-galactosidase a: pharmacological chaperoning efficacy on Fabry disease mutants. Yu Y, Mena-Barragán T, Higaki K, Johnson JL, Drury JE, Lieberman RL, Nakasone N, Ninomiya H, Tsukimura T, Sakuraba H, Suzuki Y, Nanba E, Mellet CO, García Fernández JM, Ohno K. ACS Chem Biol; 2014 Jul 18; 9(7):1460-9. PubMed ID: 24783948 [Abstract] [Full Text] [Related]
16. Migalastat HCl reduces globotriaosylsphingosine (lyso-Gb3) in Fabry transgenic mice and in the plasma of Fabry patients. Young-Gqamana B, Brignol N, Chang HH, Khanna R, Soska R, Fuller M, Sitaraman SA, Germain DP, Giugliani R, Hughes DA, Mehta A, Nicholls K, Boudes P, Lockhart DJ, Valenzano KJ, Benjamin ER. PLoS One; 2013 Jul 18; 8(3):e57631. PubMed ID: 23472096 [Abstract] [Full Text] [Related]
17. Correction of enzymatic and lysosomal storage defects in Fabry mice by adenovirus-mediated gene transfer. Ziegler RJ, Yew NS, Li C, Cherry M, Berthelette P, Romanczuk H, Ioannou YA, Zeidner KM, Desnick RJ, Cheng SH. Hum Gene Ther; 1999 Jul 01; 10(10):1667-82. PubMed ID: 10428212 [Abstract] [Full Text] [Related]
18. The pharmacological chaperone 1-deoxygalactonojirimycin increases alpha-galactosidase A levels in Fabry patient cell lines. Benjamin ER, Flanagan JJ, Schilling A, Chang HH, Agarwal L, Katz E, Wu X, Pine C, Wustman B, Desnick RJ, Lockhart DJ, Valenzano KJ. J Inherit Metab Dis; 2009 Jun 01; 32(3):424-40. PubMed ID: 19387866 [Abstract] [Full Text] [Related]
19. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry. Moise A, Maeser S, Rawer S, Eggers F, Murphy M, Bornheim J, Przybylski M. J Am Soc Mass Spectrom; 2016 Jun 01; 27(6):1071-8. PubMed ID: 27112153 [Abstract] [Full Text] [Related]
20. Tissue and plasma globotriaosylsphingosine could be a biomarker for assessing enzyme replacement therapy for Fabry disease. Togawa T, Kawashima I, Kodama T, Tsukimura T, Suzuki T, Fukushige T, Kanekura T, Sakuraba H. Biochem Biophys Res Commun; 2010 Sep 03; 399(4):716-20. PubMed ID: 20692233 [Abstract] [Full Text] [Related] Page: [Next] [New Search]