These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
139 related items for PubMed ID: 29680928
1. Random Forest Approach to QSPR Study of Fluorescence Properties Combining Quantum Chemical Descriptors and Solvent Conditions. Chen CH, Tanaka K, Funatsu K. J Fluoresc; 2018 Mar; 28(2):695-706. PubMed ID: 29680928 [Abstract] [Full Text] [Related]
2. Quantitative Structure-Fluorescence Property Relationship Analysis of a Large BODIPY Library. Schüller A, Goh GB, Kim H, Lee JS, Chang YT. Mol Inform; 2010 Oct 11; 29(10):717-29. PubMed ID: 27464015 [Abstract] [Full Text] [Related]
3. Highlighting and trying to overcome a serious drawback with QSPR studies; data collection in different experimental conditions (mixed-QSPR). Beheshti A, Riahi S, Ganjali MR, Norouzi P. J Comput Chem; 2012 Mar 15; 33(7):732-47. PubMed ID: 22241584 [Abstract] [Full Text] [Related]
5. Free variable selection QSPR study to predict (19)F chemical shifts of some fluorinated organic compounds using Random Forest and RBF-PLS methods. Goudarzi N. Spectrochim Acta A Mol Biomol Spectrosc; 2016 Apr 05; 158():60-4. PubMed ID: 26820549 [Abstract] [Full Text] [Related]
9. Modeling the excitation wavelengths (lambda(ex)) of boronic acids. Li M, Ni N, Wang B, Zhang Y. J Mol Model; 2008 Jun 05; 14(6):441-9. PubMed ID: 18351403 [Abstract] [Full Text] [Related]
12. The classification of solvents by combining classical QSPR methodology with principal component analysis. Katritzky AR, Fara DC, Kuanar M, Hur E, Karelson M. J Phys Chem A; 2005 Nov 17; 109(45):10323-41. PubMed ID: 16833328 [Abstract] [Full Text] [Related]
14. ADME properties evaluation in drug discovery: in silico prediction of blood-brain partitioning. Zhu L, Zhao J, Zhang Y, Zhou W, Yin L, Wang Y, Fan Y, Chen Y, Liu H. Mol Divers; 2018 Nov 17; 22(4):979-990. PubMed ID: 30083853 [Abstract] [Full Text] [Related]
17. Random Forest Model with Combined Features: A Practical Approach to Predict Liquid-crystalline Property. Chen CH, Tanaka K, Funatsu K. Mol Inform; 2019 Apr 17; 38(4):e1800095. PubMed ID: 30548221 [Abstract] [Full Text] [Related]
18. Application of Random Forest and Multiple Linear Regression Techniques to QSPR Prediction of an Aqueous Solubility for Military Compounds. Kovdienko NA, Polishchuk PG, Muratov EN, Artemenko AG, Kuz'min VE, Gorb L, Hill F, Leszczynski J. Mol Inform; 2010 May 17; 29(5):394-406. PubMed ID: 27463195 [Abstract] [Full Text] [Related]
20. QSPR Approach to Predict Nonadditive Properties of Mixtures. Application to Bubble Point Temperatures of Binary Mixtures of Liquids. Oprisiu I, Varlamova E, Muratov E, Artemenko A, Marcou G, Polishchuk P, Kuz'min V, Varnek A. Mol Inform; 2012 Jul 17; 31(6-7):491-502. PubMed ID: 27477467 [Abstract] [Full Text] [Related] Page: [Next] [New Search]