These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
129 related items for PubMed ID: 29705276
1. Biophysical evaluation of cardiolipin content as a regulator of the membrane lytic effect of antimicrobial peptides. Hernández-Villa L, Manrique-Moreno M, Leidy C, Jemioła-Rzemińska M, Ortíz C, Strzałka K. Biophys Chem; 2018 Jul; 238():8-15. PubMed ID: 29705276 [Abstract] [Full Text] [Related]
2. Arginine-lysine positional swap of the LL-37 peptides reveals evolutional advantages of the native sequence and leads to bacterial probes. Wang X, Junior JCB, Mishra B, Lushnikova T, Epand RM, Wang G. Biochim Biophys Acta Biomembr; 2017 Aug; 1859(8):1350-1361. PubMed ID: 28450045 [Abstract] [Full Text] [Related]
3. Bacteria May Cope Differently from Similar Membrane Damage Caused by the Australian Tree Frog Antimicrobial Peptide Maculatin 1.1. Sani MA, Henriques ST, Weber D, Separovic F. J Biol Chem; 2015 Aug 07; 290(32):19853-62. PubMed ID: 26100634 [Abstract] [Full Text] [Related]
4. Cardiolipin Strongly Inhibits the Leakage Activity of the Short Antimicrobial Peptide ATRA-1 in Comparison to LL-37, in Model Membranes Mimicking the Lipid Composition of Staphylococcus aureus. Calderón-Rivera N, Múnera-Jaramillo J, Jaramillo-Berrio S, Suesca E, Manrique-Moreno M, Leidy C. Membranes (Basel); 2023 Mar 06; 13(3):. PubMed ID: 36984691 [Abstract] [Full Text] [Related]
5. Activity of tick antimicrobial peptide from Ixodes persulcatus (persulcatusin) against cell membranes of drug-resistant Staphylococcus aureus. Miyoshi N, Isogai E, Hiramatsu K, Sasaki T. J Antibiot (Tokyo); 2017 Feb 06; 70(2):142-146. PubMed ID: 27531221 [Abstract] [Full Text] [Related]
8. Variations in carotenoid content and acyl chain composition in exponential, stationary and biofilm states of Staphylococcus aureus, and their influence on membrane biophysical properties. Perez-Lopez MI, Mendez-Reina R, Trier S, Herrfurth C, Feussner I, Bernal A, Forero-Shelton M, Leidy C. Biochim Biophys Acta Biomembr; 2019 May 01; 1861(5):978-987. PubMed ID: 30771288 [Abstract] [Full Text] [Related]
9. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides. Mitchell NJ, Seaton P, Pokorny A. Biochim Biophys Acta; 2016 May 01; 1858(5):988-94. PubMed ID: 26514602 [Abstract] [Full Text] [Related]
10. Dermcidin-derived peptides show a different mode of action than the cathelicidin LL-37 against Staphylococcus aureus. Senyürek I, Paulmann M, Sinnberg T, Kalbacher H, Deeg M, Gutsmann T, Hermes M, Kohler T, Götz F, Wolz C, Peschel A, Schittek B. Antimicrob Agents Chemother; 2009 Jun 01; 53(6):2499-509. PubMed ID: 19364862 [Abstract] [Full Text] [Related]
11. Induced resistance to the antimicrobial peptide lactoferricin B in Staphylococcus aureus. Samuelsen O, Haukland HH, Jenssen H, Krämer M, Sandvik K, Ulvatne H, Vorland LH. FEBS Lett; 2005 Jun 20; 579(16):3421-6. PubMed ID: 15946666 [Abstract] [Full Text] [Related]
12. Interactions of an anionic antimicrobial peptide with Staphylococcus aureus membranes. Dennison SR, Howe J, Morton LH, Brandenburg K, Harris F, Phoenix DA. Biochem Biophys Res Commun; 2006 Sep 08; 347(4):1006-10. PubMed ID: 16857163 [Abstract] [Full Text] [Related]
13. Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides, in Staphylococcus aureus. Nishi H, Komatsuzawa H, Fujiwara T, McCallum N, Sugai M. Antimicrob Agents Chemother; 2004 Dec 08; 48(12):4800-7. PubMed ID: 15561859 [Abstract] [Full Text] [Related]
14. The influence of mild acidity on lysyl-phosphatidylglycerol biosynthesis and lipid membrane physico-chemical properties in methicillin-resistant Staphylococcus aureus. Rehal RP, Marbach H, Hubbard ATM, Sacranie AA, Sebastiani F, Fragneto G, Harvey RD. Chem Phys Lipids; 2017 Aug 08; 206():60-70. PubMed ID: 28648851 [Abstract] [Full Text] [Related]
15. Cellular Membrane Composition Requirement by Antimicrobial and Anticancer Peptide GA-K4. Mishig-Ochir T, Gombosuren D, Jigjid A, Tuguldur B, Chuluunbaatar G, Urnukhsaikhan E, Pathak C, Lee BJ. Protein Pept Lett; 2017 Aug 08; 24(3):197-205. PubMed ID: 27993125 [Abstract] [Full Text] [Related]
16. D-form KLKLLLLLKLK-NH2 peptide exerts higher antimicrobial properties than its L-form counterpart via an association with bacterial cell wall components. Manabe T, Kawasaki K. Sci Rep; 2017 Mar 06; 7():43384. PubMed ID: 28262682 [Abstract] [Full Text] [Related]
17. Phospholipid-driven differences determine the action of the synthetic antimicrobial peptide OP-145 on Gram-positive bacterial and mammalian membrane model systems. Malanovic N, Leber R, Schmuck M, Kriechbaum M, Cordfunke RA, Drijfhout JW, de Breij A, Nibbering PH, Kolb D, Lohner K. Biochim Biophys Acta; 2015 Oct 06; 1848(10 Pt A):2437-47. PubMed ID: 26210299 [Abstract] [Full Text] [Related]
18. Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78. Monteiro C, Fernandes M, Pinheiro M, Maia S, Seabra CL, Ferreira-da-Silva F, Costa F, Reis S, Gomes P, Martins MC. Biochim Biophys Acta; 2015 May 06; 1848(5):1139-46. PubMed ID: 25680229 [Abstract] [Full Text] [Related]
19. Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. Epand RF, Mowery BP, Lee SE, Stahl SS, Lehrer RI, Gellman SH, Epand RM. J Mol Biol; 2008 May 23; 379(1):38-50. PubMed ID: 18440552 [Abstract] [Full Text] [Related]
20. Selective toxicity of antimicrobial peptide S-thanatin on bacteria. Wu G, Wu H, Fan X, Zhao R, Li X, Wang S, Ma Y, Shen Z, Xi T. Peptides; 2010 Sep 23; 31(9):1669-73. PubMed ID: 20600431 [Abstract] [Full Text] [Related] Page: [Next] [New Search]