These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
252 related items for PubMed ID: 29710502
1. Osteoblast response to Vitamin D3 loaded cellulose enriched hydroxyapatite Mesoporous silica nanoparticles composite. Sumathra M, Munusamy MA, Alarfaj AA, Rajan M. Biomed Pharmacother; 2018 Jul; 103():858-868. PubMed ID: 29710502 [Abstract] [Full Text] [Related]
2. Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering. Zhang XY, Chen YP, Han J, Mo J, Dong PF, Zhuo YH, Feng Y. Int J Biol Macromol; 2019 Sep 01; 136():1247-1257. PubMed ID: 31247228 [Abstract] [Full Text] [Related]
3. Fabrication of Hydroxyapatite with Bioglass Nanocomposite for Human Wharton's-Jelly-Derived Mesenchymal Stem Cell Growing Substrate. Ebrahimi S, Hanim YU, Sipaut CS, Jan NBA, Arshad SE, How SE. Int J Mol Sci; 2021 Sep 06; 22(17):. PubMed ID: 34502544 [Abstract] [Full Text] [Related]
4. Release behavior and signaling effect of vitamin D3 in layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffold: An in vitro evaluation. Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, Shokrgozar MA, Dehghan MM, Larijani B. Colloids Surf B Biointerfaces; 2017 Oct 01; 158():697-708. PubMed ID: 28778053 [Abstract] [Full Text] [Related]
5. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair. Saber-Samandari S, Yekta H, Ahmadi S, Alamara K. Int J Biol Macromol; 2018 Jan 01; 106():481-488. PubMed ID: 28797809 [Abstract] [Full Text] [Related]
7. Biomimetic hydroxyapatite/poly xylitol sebacic adibate/vitamin K nanocomposite for enhancing bone regeneration. Dai Z, Dang M, Zhang W, Murugan S, Teh SW, Pan H. Artif Cells Nanomed Biotechnol; 2019 Dec 25; 47(1):1898-1907. PubMed ID: 31066314 [Abstract] [Full Text] [Related]
8. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X, Liu L, Zhang Q. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb 25; 21(2):120-4. PubMed ID: 17357456 [Abstract] [Full Text] [Related]
9. Effect of silica and hydroxyapatite mineralization on the mechanical properties and the biocompatibility of nanocomposite collagen scaffolds. Heinemann S, Heinemann C, Jäger M, Neunzehn J, Wiesmann HP, Hanke T. ACS Appl Mater Interfaces; 2011 Nov 25; 3(11):4323-31. PubMed ID: 21942510 [Abstract] [Full Text] [Related]
10. Organically modified clay supported chitosan/hydroxyapatite-zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering. Bhowmick A, Banerjee SL, Pramanik N, Jana P, Mitra T, Gnanamani A, Das M, Kundu PP. Int J Biol Macromol; 2018 Jan 25; 106():11-19. PubMed ID: 28774805 [Abstract] [Full Text] [Related]
11. In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Saber-Samandari S, Saber-Samandari S, Kiyazar S, Aghazadeh J, Sadeghi A. Int J Biol Macromol; 2016 May 25; 86():434-42. PubMed ID: 26836617 [Abstract] [Full Text] [Related]
12. Cellular compatibility of nanocomposite scaffolds based on hydroxyapatite entrapped in cellulose network for bone repair. Beladi F, Saber-Samandari S, Saber-Samandari S. Mater Sci Eng C Mater Biol Appl; 2017 Jun 01; 75():385-392. PubMed ID: 28415476 [Abstract] [Full Text] [Related]
13. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS, Lee CM, Hwang YH, Kook MS, Yang SW, Lee D, Kim BH. Mater Sci Eng C Mater Biol Appl; 2017 May 01; 74():525-535. PubMed ID: 28254327 [Abstract] [Full Text] [Related]
14. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Chen Y, Kawazoe N, Chen G. Acta Biomater; 2018 Feb 01; 67():341-353. PubMed ID: 29242161 [Abstract] [Full Text] [Related]
15. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering. Fernandez JM, Molinuevo MS, Cortizo MS, Cortizo AM. J Tissue Eng Regen Med; 2011 Jun 01; 5(6):e126-35. PubMed ID: 21312338 [Abstract] [Full Text] [Related]
16. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering. Luo Z, Deng Y, Zhang R, Wang M, Bai Y, Zhao Q, Lyu Y, Wei J, Wei S. Colloids Surf B Biointerfaces; 2015 Jul 01; 131():73-82. PubMed ID: 25969416 [Abstract] [Full Text] [Related]
17. Development of nanocomposite scaffolds based on biomineralization of N,O-carboxymethyl chitosan/fucoidan conjugates for bone tissue engineering. Lu HT, Lu TW, Chen CH, Lu KY, Mi FL. Int J Biol Macromol; 2018 Dec 01; 120(Pt B):2335-2345. PubMed ID: 30189280 [Abstract] [Full Text] [Related]
18. Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering. Ba Linh NT, Min YK, Lee BT. J Biomater Sci Polym Ed; 2013 Dec 01; 24(5):520-38. PubMed ID: 23565865 [Abstract] [Full Text] [Related]
19. Inorganic apatite nanomaterial: Modified surface phenomena and its role in developing collagen based polymeric bio-composite (Coll-PLGA/HAp) for biological applications. Selvaraju S, Ramalingam S, Rao JR. Colloids Surf B Biointerfaces; 2018 Dec 01; 172():734-742. PubMed ID: 30248644 [Abstract] [Full Text] [Related]
20. Fabrication of chitin-chitosan/nano ZrO(2) composite scaffolds for tissue engineering applications. Jayakumar R, Ramachandran R, Sudheesh Kumar PT, Divyarani VV, Srinivasan S, Chennazhi KP, Tamura H, Nair SV. Int J Biol Macromol; 2011 Oct 01; 49(3):274-80. PubMed ID: 21575656 [Abstract] [Full Text] [Related] Page: [Next] [New Search]