These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


252 related items for PubMed ID: 29710502

  • 41. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering.
    Katti KS, Katti DR, Dash R.
    Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898
    [Abstract] [Full Text] [Related]

  • 42. Degradation pattern of porous CaCO3 and hydroxyapatite microspheres in vitro and in vivo for potential application in bone tissue engineering.
    Zhong Q, Li W, Su X, Li G, Zhou Y, Kundu SC, Yao J, Cai Y.
    Colloids Surf B Biointerfaces; 2016 Jul 01; 143():56-63. PubMed ID: 26998866
    [Abstract] [Full Text] [Related]

  • 43. Development of nanocomposite scaffolds based on TiO2 doped in grafted chitosan/hydroxyapatite by freeze drying method and evaluation of biocompatibility.
    Abd-Khorsand S, Saber-Samandari S, Saber-Samandari S.
    Int J Biol Macromol; 2017 Aug 01; 101():51-58. PubMed ID: 28315764
    [Abstract] [Full Text] [Related]

  • 44. Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique.
    Poursamar SA, Azami M, Mozafari M.
    Colloids Surf B Biointerfaces; 2011 Jun 01; 84(2):310-6. PubMed ID: 21310596
    [Abstract] [Full Text] [Related]

  • 45. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications.
    Nie L, Chen D, Suo J, Zou P, Feng S, Yang Q, Yang S, Ye S.
    Colloids Surf B Biointerfaces; 2012 Dec 01; 100():169-76. PubMed ID: 22766294
    [Abstract] [Full Text] [Related]

  • 46. Design of Scaffolds Based on Zinc-Modified Marine Collagen and Bilberry Leaves Extract-Loaded Silica Nanoparticles as Wound Dressings.
    Deaconu M, Prelipcean AM, Brezoiu AM, Mitran RA, Seciu-Grama AM, Matei C, Berger D.
    Int J Nanomedicine; 2024 Dec 01; 19():7673-7689. PubMed ID: 39099793
    [Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering.
    Depan D, Surya PK, Girase B, Misra RD.
    Acta Biomater; 2011 May 01; 7(5):2163-75. PubMed ID: 21284959
    [Abstract] [Full Text] [Related]

  • 50. Hydroxyapatite nanorod and microsphere functionalized with bioactive lactoferrin as a new biomaterial for enhancement bone regeneration.
    Shi P, Wang Q, Yu C, Fan F, Liu M, Tu M, Lu W, Du M.
    Colloids Surf B Biointerfaces; 2017 Jul 01; 155():477-486. PubMed ID: 28472751
    [Abstract] [Full Text] [Related]

  • 51. Hierarchical mesoporous silica nanofibers as multifunctional scaffolds for bone tissue regeneration.
    Ravichandran R, Gandhi S, Sundaramurthi D, Sethuraman S, Krishnan UM.
    J Biomater Sci Polym Ed; 2013 Jul 01; 24(17):1988-2005. PubMed ID: 23862629
    [Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53. An in vitro Experimental Insight into the Osteoblast Responses to Vitamin D3 and Its Metabolites.
    Wang D, Song J, Ma H.
    Pharmacology; 2018 Jul 01; 101(5-6):225-235. PubMed ID: 29393236
    [Abstract] [Full Text] [Related]

  • 54. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M, Xu WZ, Wang Z, Sham TK, Charpentier PA.
    ACS Appl Mater Interfaces; 2014 Oct 08; 6(19):16918-31. PubMed ID: 25184699
    [Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering.
    Lei Y, Xu Z, Ke Q, Yin W, Chen Y, Zhang C, Guo Y.
    Mater Sci Eng C Mater Biol Appl; 2017 Mar 01; 72():134-142. PubMed ID: 28024569
    [Abstract] [Full Text] [Related]

  • 57. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P, Ran J, Yan P, Zheng L, Shen X, Tong H.
    J Biomater Sci Polym Ed; 2018 Feb 01; 29(2):107-124. PubMed ID: 29140181
    [Abstract] [Full Text] [Related]

  • 58. Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering.
    Shakir M, Jolly R, Khan MS, Rauf A, Kazmi S.
    Int J Biol Macromol; 2016 Dec 01; 93(Pt A):276-289. PubMed ID: 27543347
    [Abstract] [Full Text] [Related]

  • 59. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications.
    Hasan A, Waibhaw G, Saxena V, Pandey LM.
    Int J Biol Macromol; 2018 May 01; 111():923-934. PubMed ID: 29415416
    [Abstract] [Full Text] [Related]

  • 60. Differentiation of osteoblast and osteoclast precursors on pure and silicon-substituted synthesized hydroxyapatites.
    Lehmann G, Cacciotti I, Palmero P, Montanaro L, Bianco A, Campagnolo L, Camaioni A.
    Biomed Mater; 2012 Oct 01; 7(5):055001. PubMed ID: 22781924
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.