These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
412 related items for PubMed ID: 29720577
1. Universal monitoring of minimal residual disease in acute myeloid leukemia. Coustan-Smith E, Song G, Shurtleff S, Yeoh AE, Chng WJ, Chen SP, Rubnitz JE, Pui CH, Downing JR, Campana D. JCI Insight; 2018 May 03; 3(9):. PubMed ID: 29720577 [Abstract] [Full Text] [Related]
2. CD34+CD38-CD123+ Cells Are Present in Virtually All Acute Myeloid Leukaemia Blasts: A Promising Single Unique Phenotype for Minimal Residual Disease Detection. Al-Mawali A, Pinto AD, Al-Zadjali S. Acta Haematol; 2017 May 03; 138(3):175-181. PubMed ID: 29065396 [Abstract] [Full Text] [Related]
3. Immunophenotypic Detection of Measurable Residual (Stem Cell) Disease Using LAIP Approach in Acute Myeloid Leukemia. Zeijlemaker W, Kelder A, Cloos J, Schuurhuis GJ. Curr Protoc Cytom; 2019 Dec 03; 91(1):e66. PubMed ID: 31763792 [Abstract] [Full Text] [Related]
4. [The immunophenotypic analysis of CD7+ and (or) CD56+ acute myeloid leukemic stem cells and its applications in minimal residual disease detection]. Cao H, Wang YZ, Wu HH, Chang Y, Hao L, Chen SS, Huang XJ, Lu DP, Liu YR. Zhonghua Xue Ye Xue Za Zhi; 2008 Jan 03; 29(1):23-8. PubMed ID: 18512311 [Abstract] [Full Text] [Related]
5. Delineation of target expression profiles in CD34+/CD38- and CD34+/CD38+ stem and progenitor cells in AML and CML. Herrmann H, Sadovnik I, Eisenwort G, Rülicke T, Blatt K, Herndlhofer S, Willmann M, Stefanzl G, Baumgartner S, Greiner G, Schulenburg A, Mueller N, Rabitsch W, Bilban M, Hoermann G, Streubel B, Vallera DA, Sperr WR, Valent P. Blood Adv; 2020 Oct 27; 4(20):5118-5132. PubMed ID: 33085758 [Abstract] [Full Text] [Related]
6. Expression of CD90, CD96, CD117, and CD123 on different hematopoietic cell populations from pediatric patients with acute myeloid leukemia. Chávez-González A, Dorantes-Acosta E, Moreno-Lorenzana D, Alvarado-Moreno A, Arriaga-Pizano L, Mayani H. Arch Med Res; 2014 May 27; 45(4):343-50. PubMed ID: 24751333 [Abstract] [Full Text] [Related]
7. High proportion of leukemic stem cells at diagnosis is correlated with unfavorable prognosis in childhood acute myeloid leukemia. Witte KE, Ahlers J, Schäfer I, André M, Kerst G, Scheel-Walter HG, Schwarze CP, Pfeiffer M, Lang P, Handgretinger R, Ebinger M. Pediatr Hematol Oncol; 2011 Mar 27; 28(2):91-9. PubMed ID: 21214408 [Abstract] [Full Text] [Related]
8. Comparison of minimal residual disease (MRD) monitoring by WT1 quantification between childhood acute myeloid leukemia and acute lymphoblastic leukemia. Zhang R, Yang JY, Sun HQ, Jia H, Liao J, Shi YJ, Li G. Eur Rev Med Pharmacol Sci; 2015 Mar 27; 19(14):2679-88. PubMed ID: 26221900 [Abstract] [Full Text] [Related]
9. hMICL and CD123 in combination with a CD45/CD34/CD117 backbone - a universal marker combination for the detection of minimal residual disease in acute myeloid leukaemia. Roug AS, Larsen HØ, Nederby L, Just T, Brown G, Nyvold CG, Ommen HB, Hokland P. Br J Haematol; 2014 Jan 27; 164(2):212-22. PubMed ID: 24152218 [Abstract] [Full Text] [Related]
10. Increased myeloid precursors in regenerating bone marrow; implications for detection of minimal residual disease in acute myeloid leukemia. Zeleznikova T, Stevulova L, Kovarikova A, Babusikova O. Neoplasma; 2007 Jan 27; 54(6):471-7. PubMed ID: 17949229 [Abstract] [Full Text] [Related]
11. Flow cytometric evaluation of CD38 expression levels in the newly diagnosed T-cell acute lymphoblastic leukemia and the effect of chemotherapy on its expression in measurable residual disease, refractory disease and relapsed disease: an implication for anti-CD38 immunotherapy. Tembhare PR, Sriram H, Khanka T, Chatterjee G, Panda D, Ghogale S, Badrinath Y, Deshpande N, Patkar NV, Narula G, Bagal B, Jain H, Sengar M, Khattry N, Banavali S, Gujral S, Subramanian PG. J Immunother Cancer; 2020 May 27; 8(1):. PubMed ID: 32439800 [Abstract] [Full Text] [Related]
12. Myeloblasts in normal bone marrows expressing leukaemia-associated immunophenotypes. Camburn AE, Petrasich M, Ruskova A, Chan G. Pathology; 2019 Aug 27; 51(5):502-506. PubMed ID: 31262563 [Abstract] [Full Text] [Related]
13. Evaluation of new markers for minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia: CD73 and CD86 are the most relevant new markers to increase the efficacy of MRD 2016; 00B: 000-000. Tembhare PR, Ghogale S, Ghatwai N, Badrinath Y, Kunder N, Patkar NV, Bibi AR, Chatterjee G, Arora B, Narula G, Banawali S, Deshpande N, Amare P, Gujral S, Subramanian PG. Cytometry B Clin Cytom; 2018 Jan 27; 94(1):100-111. PubMed ID: 27718302 [Abstract] [Full Text] [Related]
14. Aberrant marker expression patterns on the CD34+CD38- stem cell compartment in acute myeloid leukemia allows to distinguish the malignant from the normal stem cell compartment both at diagnosis and in remission. van Rhenen A, Moshaver B, Kelder A, Feller N, Nieuwint AW, Zweegman S, Ossenkoppele GJ, Schuurhuis GJ. Leukemia; 2007 Aug 27; 21(8):1700-7. PubMed ID: 17525725 [Abstract] [Full Text] [Related]
15. Prognostic Impact and Phenotype of Residual Acute Myeloid Leukemia Stem Cells. Jaddaoui S, Bencharef H, Lamchahab M, Quessar A, Oukkache B. Clin Lab; 2022 Jun 01; 68(6):. PubMed ID: 35704721 [Abstract] [Full Text] [Related]
16. Differential antigen expression and aberrant signaling via PI3/AKT, MAP/ERK, JAK/STAT, and Wnt/β catenin pathways in Lin-/CD38-/CD34+ cells in acute myeloid leukemia. Garg S, Shanmukhaiah C, Marathe S, Mishra P, Babu Rao V, Ghosh K, Madkaikar M. Eur J Haematol; 2016 Mar 01; 96(3):309-17. PubMed ID: 26010294 [Abstract] [Full Text] [Related]
17. Overexpression of CD200 and CD123 is a major influential factor in the clinical course of pediatric acute myeloid leukemia. Kandeel EZ, Madney Y, Eldin DN, Shafik NF. Exp Mol Pathol; 2021 Feb 01; 118():104597. PubMed ID: 33358743 [Abstract] [Full Text] [Related]
18. CD34+CD38- leukemic stem cell frequency to predict outcome in acute myeloid leukemia. Zeijlemaker W, Grob T, Meijer R, Hanekamp D, Kelder A, Carbaat-Ham JC, Oussoren-Brockhoff YJM, Snel AN, Veldhuizen D, Scholten WJ, Maertens J, Breems DA, Pabst T, Manz MG, van der Velden VHJ, Slomp J, Preijers F, Cloos J, van de Loosdrecht AA, Löwenberg B, Valk PJM, Jongen-Lavrencic M, Ossenkoppele GJ, Schuurhuis GJ. Leukemia; 2019 May 01; 33(5):1102-1112. PubMed ID: 30542144 [Abstract] [Full Text] [Related]
19. Role of minimal residual disease in the management of acute myeloid leukemia-a case-based discussion. Coltoff A, Houldsworth J, Keyzner A, Renteria AS, Mascarenhas J. Ann Hematol; 2018 Jul 01; 97(7):1155-1167. PubMed ID: 29704019 [Abstract] [Full Text] [Related]
20. CD9 in acute myeloid leukemia: Prognostic role and usefulness to target leukemic stem cells. Touzet L, Dumezy F, Roumier C, Berthon C, Bories C, Quesnel B, Preudhomme C, Boyer T. Cancer Med; 2019 Mar 01; 8(3):1279-1288. PubMed ID: 30740913 [Abstract] [Full Text] [Related] Page: [Next] [New Search]