These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
542 related items for PubMed ID: 29725733
1. A novel fluorescent aptasensor for the highly sensitive and selective detection of cardiac troponin I based on a graphene oxide platform. Liu D, Lu X, Yang Y, Zhai Y, Zhang J, Li L. Anal Bioanal Chem; 2018 Jul; 410(18):4285-4291. PubMed ID: 29725733 [Abstract] [Full Text] [Related]
3. Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate. Xing XJ, Liu XG, Yue-He, Luo QY, Tang HW, Pang DW. Biosens Bioelectron; 2012 Jul; 37(1):61-7. PubMed ID: 22613226 [Abstract] [Full Text] [Related]
4. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Arvand M, Mirroshandel AA. Biosens Bioelectron; 2017 Oct 15; 96():324-331. PubMed ID: 28525850 [Abstract] [Full Text] [Related]
5. A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB. Liang J, Wei R, He S, Liu Y, Guo L, Li L. Analyst; 2013 Mar 21; 138(6):1726-32. PubMed ID: 23359871 [Abstract] [Full Text] [Related]
6. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, Zhang Q. Anal Chem; 2012 Jul 17; 84(14):6263-70. PubMed ID: 22816786 [Abstract] [Full Text] [Related]
7. Dual signal amplified electrochemical aptasensor based on PEI-functionalized GO and ROP for highly sensitive detection of cTnI. Zhou Z, Gao T, Zhao Y, Yang P, Cheng D, Yang H, Wang Y, Li X. Bioelectrochemistry; 2023 Jun 17; 151():108402. PubMed ID: 36841148 [Abstract] [Full Text] [Related]
8. Molecular design for enhanced sensitivity of a FRET aptasensor built on the graphene oxide surface. Ueno Y, Furukawa K, Matsuo K, Inoue S, Hayashi K, Hibino H. Chem Commun (Camb); 2013 Nov 14; 49(88):10346-8. PubMed ID: 23985796 [Abstract] [Full Text] [Related]
9. Aptasensor based on a flower-shaped silver magnetic nanocomposite enables the sensitive and label-free detection of troponin I (cTnI) by SERS. Alves RS, Sigoli FA, Mazali IO. Nanotechnology; 2020 Dec 11; 31(50):505505. PubMed ID: 32927448 [Abstract] [Full Text] [Related]
10. An aptasensor for troponin I based on the aggregation-induced electrochemiluminescence of nanoparticles prepared from a cyclometallated iridium(III) complex and poly(4-vinylpyridine-co-styrene) deposited on nitrogen-doped graphene. Saremi M, Amini A, Heydari H. Mikrochim Acta; 2019 Mar 22; 186(4):254. PubMed ID: 30903376 [Abstract] [Full Text] [Related]
11. A fluorescent nanoprobe based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein vascular endothelial growth factor (VEGF). Wang SE, Si S. Appl Spectrosc; 2013 Nov 22; 67(11):1270-4. PubMed ID: 24160878 [Abstract] [Full Text] [Related]
12. Fluorescent aptasensor based on aggregation-induced emission probe and graphene oxide. Li X, Ma K, Zhu S, Yao S, Liu Z, Xu B, Yang B, Tian W. Anal Chem; 2014 Jan 07; 86(1):298-303. PubMed ID: 24299305 [Abstract] [Full Text] [Related]
13. Electrochemical dual-aptamer-based biosensor for nonenzymatic detection of cardiac troponin I by nanohybrid electrocatalysts labeling combined with DNA nanotetrahedron structure. Sun D, Luo Z, Lu J, Zhang S, Che T, Chen Z, Zhang L. Biosens Bioelectron; 2019 Jun 01; 134():49-56. PubMed ID: 30954926 [Abstract] [Full Text] [Related]
14. DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme. Sun D, Lin X, Lu J, Wei P, Luo Z, Lu X, Chen Z, Zhang L. Biosens Bioelectron; 2019 Oct 01; 142():111578. PubMed ID: 31422223 [Abstract] [Full Text] [Related]
15. Porous graphene oxide nanostructure as an excellent scaffold for label-free electrochemical biosensor: Detection of cardiac troponin I. Kazemi SH, Ghodsi E, Abdollahi S, Nadri S. Mater Sci Eng C Mater Biol Appl; 2016 Dec 01; 69():447-52. PubMed ID: 27612734 [Abstract] [Full Text] [Related]
16. Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer. Chinnappan R, AlAmer S, Eissa S, Rahamn AA, Abu Salah KM, Zourob M. Mikrochim Acta; 2017 Dec 18; 185(1):61. PubMed ID: 29594712 [Abstract] [Full Text] [Related]
17. An extremely sensitive aptasensor based on interfacial energy transfer between QDS SAMs and GO. Sun X, Liu B, Yang C, Li C. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct 15; 131():288-93. PubMed ID: 24835931 [Abstract] [Full Text] [Related]
18. Aptamer-based fluorescent sensor for highly sensitive detection of methamphetamine. Wang Y, Wang Z, Tong Y, Zhang D, Yun K, Yan J, Niu W. Luminescence; 2024 Feb 15; 39(2):e4687. PubMed ID: 38332476 [Abstract] [Full Text] [Related]
19. Novel electrochemical sensing platform for ultrasensitive detection of cardiac troponin I based on aptamer-MoS2 nanoconjugates. Qiao X, Li K, Xu J, Cheng N, Sheng Q, Cao W, Yue T, Zheng J. Biosens Bioelectron; 2018 Aug 15; 113():142-147. PubMed ID: 29754053 [Abstract] [Full Text] [Related]
20. Development of fluorescent aptasensor for detection of acephate by utilizing graphene oxide platform. Singh P, Kumar S, Verma SK. Talanta; 2023 Jan 15; 252():123843. PubMed ID: 36049338 [Abstract] [Full Text] [Related] Page: [Next] [New Search]