These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


474 related items for PubMed ID: 29730593

  • 1. Synergistic effect between sulfide mineral and acidophilic bacteria significantly promoted Cr(VI) reduction.
    Gan M, Li J, Sun S, Ding J, Zhu J, Liu X, Qiu G.
    J Environ Manage; 2018 Aug 01; 219():84-94. PubMed ID: 29730593
    [Abstract] [Full Text] [Related]

  • 2. Hexavalent chromium remediation based on the synergistic effect between chemoautotrophic bacteria and sulfide minerals.
    Gan M, Gu C, Ding J, Zhu J, Liu X, Qiu G.
    Ecotoxicol Environ Saf; 2019 May 30; 173():118-130. PubMed ID: 30771655
    [Abstract] [Full Text] [Related]

  • 3. Pyrite-Based Cr(VI) Reduction Driven by Chemoautotrophic Acidophilic Bacteria.
    Liu X, Wu H, Gan M, Qiu G.
    Front Microbiol; 2019 May 30; 10():3082. PubMed ID: 32117078
    [Abstract] [Full Text] [Related]

  • 4. Active destruction of pyrite passivation by ozone oxidation of a biotic leaching system.
    Lv X, Zhao H, Zhang Y, Yan Z, Zhao Y, Zheng H, Liu W, Xie J, Qiu G.
    Chemosphere; 2021 Aug 30; 277():130335. PubMed ID: 33780674
    [Abstract] [Full Text] [Related]

  • 5. Role of low molecular weight organic acids on pyrite dissolution in aqueous systems: implications for catalytic chromium (VI) treatment.
    Kantar C.
    Water Sci Technol; 2016 Aug 30; 74(1):99-109. PubMed ID: 27386987
    [Abstract] [Full Text] [Related]

  • 6. Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure.
    Kantar C, Ari C, Keskin S.
    Water Res; 2015 Jun 01; 76():66-75. PubMed ID: 25792435
    [Abstract] [Full Text] [Related]

  • 7. Enhancement of Cr(VI) reduction by indigenous bacterial consortia using natural pyrite: A detailed study to elucidate the mechanisms involved in the highly efficient and possible sustainable system.
    Zhang K, Zhu Z, Peng M, Tian L, Chen Y, Zhu J, Gan M.
    Chemosphere; 2022 Dec 01; 308(Pt 1):136228. PubMed ID: 36041522
    [Abstract] [Full Text] [Related]

  • 8. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans.
    Kocaman AT, Cemek M, Edwards KJ.
    Can J Microbiol; 2016 Aug 01; 62(8):629-42. PubMed ID: 27332502
    [Abstract] [Full Text] [Related]

  • 9. Cr(VI) removal from aqueous systems using pyrite as the reducing agent: batch, spectroscopic and column experiments.
    Kantar C, Ari C, Keskin S, Dogaroglu ZG, Karadeniz A, Alten A.
    J Contam Hydrol; 2015 Mar 01; 174():28-38. PubMed ID: 25644191
    [Abstract] [Full Text] [Related]

  • 10. Can Sulfate Be the First Dominant Aqueous Sulfur Species Formed in the Oxidation of Pyrite by Acidithiobacillus ferrooxidans?
    Borilova S, Mandl M, Zeman J, Kucera J, Pakostova E, Janiczek O, Tuovinen OH.
    Front Microbiol; 2018 Mar 01; 9():3134. PubMed ID: 30619202
    [Abstract] [Full Text] [Related]

  • 11. Synergistic promotion of antimony transformation in the interaction of Acidithiobacillus ferrooxidans and pyrite by driving the formation of reactive oxygen species and secondary minerals.
    He P, Yang Q, Gu C, Liu M, Li P, Luo T, Chen J, Chen J, Zhu J, Gan M.
    Chemosphere; 2024 Sep 01; 363():142955. PubMed ID: 39069100
    [Abstract] [Full Text] [Related]

  • 12. Acidophilic Iron- and Sulfur-Oxidizing Bacteria, Acidithiobacillus ferrooxidans, Drives Alkaline pH Neutralization and Mineral Weathering in Fe Ore Tailings.
    Yi Q, Wu S, Southam G, Robertson L, You F, Liu Y, Wang S, Saha N, Webb R, Wykes J, Chan TS, Lu YR, Huang L.
    Environ Sci Technol; 2021 Jun 15; 55(12):8020-8034. PubMed ID: 34043324
    [Abstract] [Full Text] [Related]

  • 13. Manipulation of pyrite colonization and leaching by iron-oxidizing Acidithiobacillus species.
    Bellenberg S, Barthen R, Boretska M, Zhang R, Sand W, Vera M.
    Appl Microbiol Biotechnol; 2015 Feb 15; 99(3):1435-49. PubMed ID: 25381488
    [Abstract] [Full Text] [Related]

  • 14. Pyrite oxidation by hexavalent chromium: investigation of the chemical processes by monitoring of aqueous metal species.
    Demoisson F, Mullet M, Humbert B.
    Environ Sci Technol; 2005 Nov 15; 39(22):8747-52. PubMed ID: 16323772
    [Abstract] [Full Text] [Related]

  • 15. Identification and characterization of Acidithiobacillus ferrooxidans YY2 and its application in the biodesulfurization of coal.
    Yang X, Wang S, Liu Y, Zhang Y.
    Can J Microbiol; 2015 Jan 15; 61(1):65-71. PubMed ID: 25496139
    [Abstract] [Full Text] [Related]

  • 16. Differential surface modification mechanism of chalcopyrite and pyrite by Thiobacillus ferrooxidans and its response to bioflotation.
    Su C, Cai J, Zheng Q, Peng R, Yu X, Shen P, Liu D.
    Bioresour Technol; 2024 May 15; 399():130619. PubMed ID: 38552857
    [Abstract] [Full Text] [Related]

  • 17. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: significance of microbial interactions.
    Okibe N, Johnson DB.
    Biotechnol Bioeng; 2004 Sep 05; 87(5):574-83. PubMed ID: 15352055
    [Abstract] [Full Text] [Related]

  • 18. Inhibition of pyrite oxidation through forming biogenic K-jarosite coatings to prevent acid mine drainage production.
    Hong M, Wang J, Yang B, Liu Y, Sun X, Li L, Yu S, Liu S, Kang Y, Wang W, Qiu G.
    Water Res; 2024 Mar 15; 252():121221. PubMed ID: 38324985
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. "Bioshrouding": a novel approach for securing reactive mineral tailings.
    Johnson DB, Yajie L, Okibe N.
    Biotechnol Lett; 2008 Mar 15; 30(3):445-9. PubMed ID: 17975731
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.