These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
474 related items for PubMed ID: 29730593
21. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Sand W, Gehrke T. Res Microbiol; 2006; 157(1):49-56. PubMed ID: 16431087 [Abstract] [Full Text] [Related]
22. Insight into the crystal facet-dependent Cr(VI) reduction: A comparative study of pyrite {100} and {111} facets. Tang B, Liang J, Wen Z, Zhou Y, Yan Z, Zhou Y, He P, Gu C, Gan M, Zhu J. J Environ Sci (China); 2025 Apr; 150():78-90. PubMed ID: 39306442 [Abstract] [Full Text] [Related]
26. Global transcriptional responses of Acidithiobacillus ferrooxidans Wenelen under different sulfide minerals. Latorre M, Ehrenfeld N, Cortés MP, Travisany D, Budinich M, Aravena A, González M, Bobadilla-Fazzini RA, Parada P, Maass A. Bioresour Technol; 2016 Jan; 200():29-34. PubMed ID: 26476161 [Abstract] [Full Text] [Related]
30. Microbially Influenced Corrosion of Stainless Steel by Acidithiobacillus ferrooxidans Supplemented with Pyrite: Importance of Thiosulfate. Inaba Y, Xu S, Vardner JT, West AC, Banta S. Appl Environ Microbiol; 2019 Nov 01; 85(21):. PubMed ID: 31444204 [Abstract] [Full Text] [Related]
31. Characteristics, kinetics, thermodynamics and long-term effects of zerovalent iron/pyrite in remediation of Cr(VI)-contaminated soil. Min X, Li Q, Zhang X, Liu L, Xie Y, Guo L, Liao Q, Yang Z, Yang W. Environ Pollut; 2021 Nov 15; 289():117830. PubMed ID: 34325095 [Abstract] [Full Text] [Related]
33. Analysis of the surface proteins of Acidithiobacillus ferrooxidans strain SP5/1 and the new, pyrite-oxidizing Acidithiobacillus isolate HV2/2, and their possible involvement in pyrite oxidation. Klingl A, Moissl-Eichinger C, Wanner G, Zweck J, Huber H, Thomm M, Rachel R. Arch Microbiol; 2011 Dec 15; 193(12):867-82. PubMed ID: 21698546 [Abstract] [Full Text] [Related]
34. Investigation of energy gene expressions and community structures of free and attached acidophilic bacteria in chalcopyrite bioleaching. Zhu J, Jiao W, Li Q, Liu X, Qin W, Qiu G, Hu Y, Chai L. J Ind Microbiol Biotechnol; 2012 Dec 15; 39(12):1833-40. PubMed ID: 22968225 [Abstract] [Full Text] [Related]
35. Culture-dependent hunt and characterization of iron-oxidizing bacteria in Baiyin Copper Mine, China, and their application in metals extraction. Sajjad W, Zheng G, Ma X, Rafiq M, Irfan M, Xu W, Ali B. J Basic Microbiol; 2019 Mar 15; 59(3):323-336. PubMed ID: 30592309 [Abstract] [Full Text] [Related]
36. Combined effect of silver ion and pyrite on AMD formation generated by chalcopyrite bio-dissolution. Liao R, Yang B, Huang X, Hong M, Yu S, Liu S, Wang J, Qiu G. Chemosphere; 2021 Sep 15; 279():130516. PubMed ID: 33878694 [Abstract] [Full Text] [Related]
37. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness. Liu Y, Mou H, Chen L, Mirza ZA, Liu L. J Hazard Mater; 2015 Nov 15; 298():83-90. PubMed ID: 26026959 [Abstract] [Full Text] [Related]
39. Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans. Lara RH, García-Meza JV, Cruz R, Valdez-Pérez D, González I. Appl Microbiol Biotechnol; 2012 Aug 15; 95(3):799-809. PubMed ID: 22113561 [Abstract] [Full Text] [Related]
40. Leachability of metals from waste incineration residues by iron- and sulfur-oxidizing bacteria. Kremser K, Thallner S, Strbik D, Spiess S, Kucera J, Vaculovic T, Vsiansky D, Haberbauer M, Mandl M, Guebitz GM. J Environ Manage; 2021 Feb 15; 280():111734. PubMed ID: 33288317 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]