These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


540 related items for PubMed ID: 29735765

  • 1. Characterization of Flagellum and Toxin Phase Variation in Clostridioides difficile Ribotype 012 Isolates.
    Anjuwon-Foster BR, Maldonado-Vazquez N, Tamayo R.
    J Bacteriol; 2018 Jul 15; 200(14):. PubMed ID: 29735765
    [Abstract] [Full Text] [Related]

  • 2. A genetic switch controls the production of flagella and toxins in Clostridium difficile.
    Anjuwon-Foster BR, Tamayo R.
    PLoS Genet; 2017 Mar 15; 13(3):e1006701. PubMed ID: 28346491
    [Abstract] [Full Text] [Related]

  • 3. Flagellum and toxin phase variation impacts intestinal colonization and disease development in a mouse model of Clostridioides difficile infection.
    Trzilova D, Warren MAH, Gadda NC, Williams CL, Tamayo R.
    Gut Microbes; 2022 Mar 15; 14(1):2038854. PubMed ID: 35192433
    [Abstract] [Full Text] [Related]

  • 4. Association between Clostridioides difficile ribotypes, restriction endonuclease analysis types, and toxin gene expression.
    Watanabe H, Koizumi Y, Matsumoto A, Asai N, Yamagishi Y, Mikamo H.
    Anaerobe; 2018 Dec 15; 54():140-143. PubMed ID: 30201540
    [Abstract] [Full Text] [Related]

  • 5. Rho factor mediates flagellum and toxin phase variation and impacts virulence in Clostridioides difficile.
    Trzilova D, Anjuwon-Foster BR, Torres Rivera D, Tamayo R.
    PLoS Pathog; 2020 Aug 15; 16(8):e1008708. PubMed ID: 32785266
    [Abstract] [Full Text] [Related]

  • 6. Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation.
    Edwards AN, Krall EG, McBride SM.
    J Bacteriol; 2020 Jan 02; 202(2):. PubMed ID: 31659010
    [Abstract] [Full Text] [Related]

  • 7. Phase Variation of Flagella and Toxins in Clostridioides difficile is Mediated by Selective Rho-dependent Termination.
    Warren Norris MAH, Plaskon DM, Tamayo R.
    J Mol Biol; 2024 Mar 15; 436(6):168456. PubMed ID: 38278436
    [Abstract] [Full Text] [Related]

  • 8. New types of toxin A-negative, toxin B-positive strains among clinical isolates of Clostridium difficile in Australia.
    Elliott B, Squire MM, Thean S, Chang BJ, Brazier JS, Rupnik M, Riley TV.
    J Med Microbiol; 2011 Aug 15; 60(Pt 8):1108-1111. PubMed ID: 21393460
    [Abstract] [Full Text] [Related]

  • 9. Modulation of toxin production by the flagellar regulon in Clostridium difficile.
    Aubry A, Hussack G, Chen W, KuoLee R, Twine SM, Fulton KM, Foote S, Carrillo CD, Tanha J, Logan SM.
    Infect Immun; 2012 Oct 15; 80(10):3521-32. PubMed ID: 22851750
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Spo0A differentially regulates toxin production in evolutionarily diverse strains of Clostridium difficile.
    Mackin KE, Carter GP, Howarth P, Rood JI, Lyras D.
    PLoS One; 2013 Oct 15; 8(11):e79666. PubMed ID: 24236153
    [Abstract] [Full Text] [Related]

  • 13. New ribotype Clostridioides difficile from ST11 group revealed higher pathogenic ability than RT078.
    Gu W, Wang W, Li W, Li N, Wang Y, Zhang W, Lu C, Tong P, Han Y, Sun X, Lu J, Wu Y, Dai J.
    Emerg Microbes Infect; 2021 Dec 15; 10(1):687-699. PubMed ID: 33682630
    [Abstract] [Full Text] [Related]

  • 14. Correlation of disease severity with fecal toxin levels in patients with Clostridium difficile-associated diarrhea and distribution of PCR ribotypes and toxin yields in vitro of corresponding isolates.
    Akerlund T, Svenungsson B, Lagergren A, Burman LG.
    J Clin Microbiol; 2006 Feb 15; 44(2):353-8. PubMed ID: 16455883
    [Abstract] [Full Text] [Related]

  • 15. Molecular cloning, overexpression in Escherichia coli, and purification of 6x his-tagged C-terminal domain of Clostridium difficile toxins A and B.
    Letourneur O, Ottone S, Delauzun V, Bastide MC, Foussadier A.
    Protein Expr Purif; 2003 Oct 15; 31(2):276-85. PubMed ID: 14550648
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Emergence of Clostridium difficile ribotype 027 in Korea.
    Kim H, Lee Y, Moon HW, Lim CS, Lee K, Chong Y.
    Korean J Lab Med; 2011 Jul 15; 31(3):191-6. PubMed ID: 21779194
    [Abstract] [Full Text] [Related]

  • 18. Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR.
    El Meouche I, Peltier J, Monot M, Soutourina O, Pestel-Caron M, Dupuy B, Pons JL.
    PLoS One; 2013 Jul 15; 8(12):e83748. PubMed ID: 24358307
    [Abstract] [Full Text] [Related]

  • 19. Assessment of changes in the epidemiology of Clostridium difficile isolated from diarrheal patients in Hungary.
    Terhes G, Urbán E, Sóki J, Szikra L, Konkoly-Thege M, Vollain M, Nagy E.
    Anaerobe; 2009 Dec 15; 15(6):237-40. PubMed ID: 19682411
    [Abstract] [Full Text] [Related]

  • 20. Comparison of toxinotyping and PCR ribotyping of Clostridium difficile strains and description of novel toxinotypes.
    Rupnik M, Brazier JS, Duerden BI, Grabnar M, Stubbs SLJ.
    Microbiology (Reading); 2001 Feb 15; 147(Pt 2):439-447. PubMed ID: 11158361
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.