These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
299 related items for PubMed ID: 29742502
41. Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Noh H, Kim JS, Han KH, Lee GT, Song JS, Chung SH, Jeon JS, Ha H, Lee HB. Kidney Int; 2006 Jun; 69(11):2022-8. PubMed ID: 16641917 [Abstract] [Full Text] [Related]
44. Tiao Geng decoction inhibits tributyltin chloride-induced GT1-7 neuronal apoptosis through ASK1/MKK7/JNK signaling pathway. Li S, Cong C, Liu Y, Liu X, Liu H, Zhao L, Gao X, Gui W, Xu L. J Ethnopharmacol; 2021 Apr 06; 269():113669. PubMed ID: 33338591 [Abstract] [Full Text] [Related]
45. N-Acetylcysteine protects the peritoneum from the injury induced by hypertonic dialysis solution. Bui DS, Seguro AC, Shimitzu MH, Schliemann I, Martini D, Romão JE, Pecoits Filho RF, Abensur H. J Nephrol; 2012 Apr 06; 25(1):90-5. PubMed ID: 21667456 [Abstract] [Full Text] [Related]
46. Oxidation-triggered c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways for apoptosis in human leukaemic cells stimulated by epigallocatechin-3-gallate (EGCG): a distinct pathway from those of chemically induced and receptor-mediated apoptosis. Saeki K, Kobayashi N, Inazawa Y, Zhang H, Nishitoh H, Ichijo H, Saeki K, Isemura M, Yuo A. Biochem J; 2002 Dec 15; 368(Pt 3):705-20. PubMed ID: 12206715 [Abstract] [Full Text] [Related]
47. Tanshinone IIA attenuates renal injury during hypothermic preservation via the MEK/ERK1/2/GSK-3β pathway. Xu L, Xu Y, Zhu Z, Gu H, Chen C, Chen J. BMC Complement Med Ther; 2021 Oct 08; 21(1):257. PubMed ID: 34625061 [Abstract] [Full Text] [Related]
48. Tanshinone IIA protects cardiac myocytes against oxidative stress-triggered damage and apoptosis. Fu J, Huang H, Liu J, Pi R, Chen J, Liu P. Eur J Pharmacol; 2007 Jul 30; 568(1-3):213-21. PubMed ID: 17537428 [Abstract] [Full Text] [Related]
49. Morphological characteristics in peritoneum in patients with neutral peritoneal dialysis solution. Hamada C, Honda K, Kawanishi K, Nakamoto H, Ito Y, Sakurada T, Tanno Y, Mizumasa T, Miyazaki M, Moriishi M, Nakayama M. J Artif Organs; 2015 Sep 30; 18(3):243-50. PubMed ID: 25680950 [Abstract] [Full Text] [Related]
50. Pyruvate preserves neutrophilic superoxide production in acidic, high glucose-enriched peritoneal dialysis solutions. Wu YT, Wu ZL, Jiang XF, Li S, Zhou FQ. Artif Organs; 2003 Mar 30; 27(3):276-81. PubMed ID: 12662215 [Abstract] [Full Text] [Related]
51. Zinc supplementation inhibits the high glucose‑induced EMT of peritoneal mesothelial cells by activating the Nrf2 antioxidant pathway. Gao L, Fan Y, Zhang X, Yang L, Huang W, Hang T, Li M, Du S, Ma J. Mol Med Rep; 2019 Jul 30; 20(1):655-663. PubMed ID: 31115566 [Abstract] [Full Text] [Related]
53. Can N-acetylcysteine preserve peritoneal function and morphology in encapsulating peritoneal sclerosis? Bozkurt D, Hur E, Ulkuden B, Sezak M, Nar H, Purclutepe O, Sen S, Duman S. Perit Dial Int; 2009 Feb 30; 29 Suppl 2():S202-5. PubMed ID: 19270218 [Abstract] [Full Text] [Related]
54. D-glucose increases the synthesis of tissue-type plasminogen activator (t-PA) in human peritoneal mesothelial cells. Sitter T, Mandl-Weber S, Wörnle M, Haslinger B, Goedde M, Kooistra T. Thromb Haemost; 1999 Sep 30; 82(3):1171-6. PubMed ID: 10494783 [Abstract] [Full Text] [Related]
55. Lipophilic Extract and Tanshinone IIA Derived from Salvia miltiorrhiza Attenuate Uric Acid Nephropathy through Suppressing Oxidative Stress-Activated MAPK Pathways. Zhang XW, Zhou M, An L, Zhang P, Li P, Chen J. Am J Chin Med; 2020 Sep 30; 48(6):1455-1473. PubMed ID: 32933312 [Abstract] [Full Text] [Related]
56. Partial replacement of d-glucose with d-allose ameliorates peritoneal injury and hyperglycaemia induced by peritoneal dialysis fluid in rats. Ozaki T, Fu HY, Onishi K, Yokoyama S, Fujita T, Tobiume A, Sofue T, Akimitsu K, Minamino T. Perit Dial Int; 2024 Mar 30; 44(2):125-132. PubMed ID: 37525525 [Abstract] [Full Text] [Related]
57. Protective effects and mechanisms of omega-3 polyunsaturated fatty acid on intestinal injury and macrophage polarization in peritoneal dialysis rats. Tang H, Zhu X, Gong C, Liu H, Liu F. Nephrology (Carlton); 2019 Oct 30; 24(10):1081-1089. PubMed ID: 30887626 [Abstract] [Full Text] [Related]
58. Diabetes and exposure to peritoneal dialysis solutions alter tight junction proteins and glucose transporters of rat peritoneal mesothelial cells. Debray-García Y, Sánchez EI, Rodríguez-Muñoz R, Venegas MA, Velazquez J, Reyes JL. Life Sci; 2016 Sep 15; 161():78-89. PubMed ID: 27493079 [Abstract] [Full Text] [Related]
59. Glucose-based PD solution, but not icodextrin-based PD solution, induces plasminogen activator inhibitor-1 and tissue-type plasminogen activator in human peritoneal mesothelial cells via ERK1/2. Katsutani M, Ito T, Masaki T, Kohno N, Yorioka N. Ther Apher Dial; 2007 Apr 15; 11(2):94-100. PubMed ID: 17381529 [Abstract] [Full Text] [Related]
60. Caffeic acid phenethyl ester restores mitochondrial homeostasis against peritoneal fibrosis induced by peritoneal dialysis through the AMPK/SIRT1 pathway. Lu Y, Gao L, Zhang W, Zeng Y, Hu J, Song K. Ren Fail; 2024 Dec 15; 46(1):2350235. PubMed ID: 38721924 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]