These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
202 related items for PubMed ID: 29746542
1. Depletion of mRNA export regulator DBP5/DDX19, GLE1 or IPPK that is a key enzyme for the production of IP6, resulting in differentially altered cytoplasmic mRNA expression and specific cell defect. Okamura M, Yamanaka Y, Shigemoto M, Kitadani Y, Kobayashi Y, Kambe T, Nagao M, Kobayashi I, Okumura K, Masuda S. PLoS One; 2018; 13(5):e0197165. PubMed ID: 29746542 [Abstract] [Full Text] [Related]
2. Nup42 and IP6 coordinate Gle1 stimulation of Dbp5/DDX19B for mRNA export in yeast and human cells. Adams RL, Mason AC, Glass L, Aditi, Wente SR. Traffic; 2017 Dec; 18(12):776-790. PubMed ID: 28869701 [Abstract] [Full Text] [Related]
3. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Weirich CS, Erzberger JP, Flick JS, Berger JM, Thorner J, Weis K. Nat Cell Biol; 2006 Jul; 8(7):668-76. PubMed ID: 16783364 [Abstract] [Full Text] [Related]
4. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Montpetit B, Thomsen ND, Helmke KJ, Seeliger MA, Berger JM, Weis K. Nature; 2011 Apr 14; 472(7342):238-42. PubMed ID: 21441902 [Abstract] [Full Text] [Related]
5. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Alcázar-Román AR, Tran EJ, Guo S, Wente SR. Nat Cell Biol; 2006 Jul 14; 8(7):711-6. PubMed ID: 16783363 [Abstract] [Full Text] [Related]
6. Dbp5, Gle1-IP6 and Nup159: a working model for mRNP export. Folkmann AW, Noble KN, Cole CN, Wente SR. Nucleus; 2011 Jul 14; 2(6):540-8. PubMed ID: 22064466 [Abstract] [Full Text] [Related]
7. Cytoplasmic inositol hexakisphosphate production is sufficient for mediating the Gle1-mRNA export pathway. Miller AL, Suntharalingam M, Johnson SL, Audhya A, Emr SD, Wente SR. J Biol Chem; 2004 Dec 03; 279(49):51022-32. PubMed ID: 15459192 [Abstract] [Full Text] [Related]
8. The Dbp5 cycle at the nuclear pore complex during mRNA export I: dbp5 mutants with defects in RNA binding and ATP hydrolysis define key steps for Nup159 and Gle1. Hodge CA, Tran EJ, Noble KN, Alcazar-Roman AR, Ben-Yishay R, Scarcelli JJ, Folkmann AW, Shav-Tal Y, Wente SR, Cole CN. Genes Dev; 2011 May 15; 25(10):1052-64. PubMed ID: 21576265 [Abstract] [Full Text] [Related]
9. Dbp5 - from nuclear export to translation. Tieg B, Krebber H. Biochim Biophys Acta; 2013 Aug 15; 1829(8):791-8. PubMed ID: 23128325 [Abstract] [Full Text] [Related]
10. Control of mRNA export and translation termination by inositol hexakisphosphate requires specific interaction with Gle1. Alcázar-Román AR, Bolger TA, Wente SR. J Biol Chem; 2010 May 28; 285(22):16683-92. PubMed ID: 20371601 [Abstract] [Full Text] [Related]
11. The Dbp5 cycle at the nuclear pore complex during mRNA export II: nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1. Noble KN, Tran EJ, Alcázar-Román AR, Hodge CA, Cole CN, Wente SR. Genes Dev; 2011 May 15; 25(10):1065-77. PubMed ID: 21576266 [Abstract] [Full Text] [Related]
12. Correction: Depletion of mRNA export regulator DBP5/DDX19, GLE1 or IPPK that is a key enzyme for the production of IP6, resulting in differentially altered cytoplasmic mRNA expression and specific cell defect. Okamura M, Yamanaka Y, Shigemoto M, Kitadani Y, Kobayashi Y, Kambe T, Nagao M, Kobayashi I, Okumura K, Masuda S. PLoS One; 2019 May 15; 14(7):e0220511. PubMed ID: 31344122 [Abstract] [Full Text] [Related]
13. Structure of the C-terminus of the mRNA export factor Dbp5 reveals the interaction surface for the ATPase activator Gle1. Dossani ZY, Weirich CS, Erzberger JP, Berger JM, Weis K. Proc Natl Acad Sci U S A; 2009 Sep 22; 106(38):16251-6. PubMed ID: 19805289 [Abstract] [Full Text] [Related]
14. Structural and functional analysis of mRNA export regulation by the nuclear pore complex. Lin DH, Correia AR, Cai SW, Huber FM, Jette CA, Hoelz A. Nat Commun; 2018 Jun 13; 9(1):2319. PubMed ID: 29899397 [Abstract] [Full Text] [Related]
15. InsP6-sensitive variants of the Gle1 mRNA export factor rescue growth and fertility defects of the ipk1 low-phytic-acid mutation in Arabidopsis. Lee HS, Lee DH, Cho HK, Kim SH, Auh JH, Pai HS. Plant Cell; 2015 Feb 13; 27(2):417-31. PubMed ID: 25670768 [Abstract] [Full Text] [Related]
16. Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export. Neumann B, Wu H, Hackmann A, Krebber H. PLoS One; 2016 Feb 13; 11(2):e0149571. PubMed ID: 26872259 [Abstract] [Full Text] [Related]
17. Nup159 Weakens Gle1 Binding to Dbp5 But Does Not Accelerate ADP Release. Wong EV, Gray S, Cao W, Montpetit R, Montpetit B, De La Cruz EM. J Mol Biol; 2018 Jul 06; 430(14):2080-2095. PubMed ID: 29782832 [Abstract] [Full Text] [Related]
18. The mRNA export factor Gle1 and inositol hexakisphosphate regulate distinct stages of translation. Bolger TA, Folkmann AW, Tran EJ, Wente SR. Cell; 2008 Aug 22; 134(4):624-33. PubMed ID: 18724935 [Abstract] [Full Text] [Related]
19. Mechanistic insights into mRNA export through structures of Dbp5. Ling SH, Song H. RNA Biol; 2010 Aug 22; 7(1):23-7. PubMed ID: 20023400 [Abstract] [Full Text] [Related]
20. Emerging molecular functions and novel roles for the DEAD-box protein Dbp5/DDX19 in gene expression. Arul Nambi Rajan A, Montpetit B. Cell Mol Life Sci; 2021 Mar 22; 78(5):2019-2030. PubMed ID: 33205304 [Abstract] [Full Text] [Related] Page: [Next] [New Search]