These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
188 related items for PubMed ID: 29753910
41. A Bacterial Type Three Secretion-Based Delivery System for Functional Characterization of Sporisorium scitamineum Plant Immune Suppressing Effector Proteins. Maia T, Rody HVS, Bombardelli RGH, Souto TG, Camargo LEA, Monteiro-Vitorello CB. Phytopathology; 2022 Jul; 112(7):1513-1523. PubMed ID: 35050679 [Abstract] [Full Text] [Related]
42. Transcriptional reprogramming of major defense-signaling pathways during defense priming and sugarcane-Colletotrichum falcatum interaction. Ashwin NMR, Barnabas L, Amalamol D, Lakshana KV, Ramesh Sundar A, Malathi P, Viswanathan R. Mol Biol Rep; 2020 Nov; 47(11):8911-8923. PubMed ID: 33161528 [Abstract] [Full Text] [Related]
43. Transcriptome analysis of sugarcane reveals differential switching of major defense signaling pathways in response to Sporisorium scitamineum isolates with varying virulent attributes. Agisha VN, Ashwin NMR, Vinodhini RT, Nalayeni K, Ramesh Sundar A, Malathi P, Viswanathan R. Front Plant Sci; 2022 Nov; 13():969826. PubMed ID: 36325538 [Abstract] [Full Text] [Related]
44. Biotrophic interaction of Sporisorium scitamineum on a new host--Saccharum spontaneum. Jose RC, Louis B, Goyari S, Waikhom SD, Handique PJ, Talukdar NC. Micron; 2016 Feb; 81():8-15. PubMed ID: 26642345 [Abstract] [Full Text] [Related]
45. Defence sugarcane glycoproteins disorganize microtubules and prevent nuclear polarization and germination of Sporisorium scitamineum teliospores. Sánchez-Elordi E, Baluška F, Echevarría C, Vicente C, Legaz ME. J Plant Physiol; 2016 Aug 01; 200():111-23. PubMed ID: 27372179 [Abstract] [Full Text] [Related]
46. Sugarcane smut: shedding light on the development of the whip-shaped sorus. Marques JPR, Appezzato-da-Glória B, Piepenbring M, Massola NS, Monteiro-Vitorello CB, Vieira MLC. Ann Bot; 2017 Mar 01; 119(5):815-827. PubMed ID: 27568298 [Abstract] [Full Text] [Related]
47. New 24-Membered Macrolactins Isolated from Marine Bacteria Bacillus siamensis as Potent Fungal Inhibitors against Sugarcane Smut. Gao C, Chen X, Yu L, Jiang L, Pan D, Jiang S, Gan Y, Liu Y, Yi X. J Agric Food Chem; 2021 Apr 21; 69(15):4392-4401. PubMed ID: 33834775 [Abstract] [Full Text] [Related]
48. The AGC Kinase SsAgc1 Regulates Sporisorium scitamineum Mating/Filamentation and Pathogenicity. Wang Y, Deng YZ, Cui G, Huang C, Zhang B, Chang C, Jiang Z, Zhang LH. mSphere; 2019 May 29; 4(3):. PubMed ID: 31142621 [Abstract] [Full Text] [Related]
49. Intracellular polyamines regulate redox homeostasis with cAMP-PKA signalling during sexual mating/filamentation and pathogenicity of Sporisorium scitamineum. Yin K, Cui G, Bi X, Liang M, Hu Z, Deng YZ. Mol Plant Pathol; 2024 Jan 29; 25(1):e13393. PubMed ID: 37814404 [Abstract] [Full Text] [Related]
51. Sugarcane Smut, Caused by Sporisorium scitamineum, a Major Disease of Sugarcane: A Contemporary Review. Bhuiyan SA, Magarey RC, McNeil MD, Aitken KS. Phytopathology; 2021 Nov 29; 111(11):1905-1917. PubMed ID: 34241540 [Abstract] [Full Text] [Related]
52. RNAseq Transcriptional Profiling following Whip Development in Sugarcane Smut Disease. Schaker PD, Palhares AC, Taniguti LM, Peters LP, Creste S, Aitken KS, Van Sluys MA, Kitajima JP, Vieira ML, Monteiro-Vitorello CB. PLoS One; 2016 Nov 29; 11(9):e0162237. PubMed ID: 27583836 [Abstract] [Full Text] [Related]
53. Comparative proteomics of sugarcane smut fungus - Sporisorium scitamineum unravels dynamic proteomic alterations during the dimorphic transition. Kumaravel N, Ebinezer LB, Ashwin NMR, Franchin C, Battisti I, Carletti P, Ramesh Sundar A, Masi A, Malathi P, Viswanathan R, Arrigoni G. J Proteomics; 2024 Jul 30; 304():105230. PubMed ID: 38901800 [Abstract] [Full Text] [Related]
54. cAMP/PKA signalling pathway regulates redox homeostasis essential for Sporisorium scitamineum mating/filamentation and virulence. Chang C, Cai E, Deng YZ, Mei D, Qiu S, Chen B, Zhang LH, Jiang Z. Environ Microbiol; 2019 Mar 30; 21(3):959-971. PubMed ID: 30537399 [Abstract] [Full Text] [Related]
55. Differential responses of genes and enzymes associated with ROS protective responses in the sugarcane smut fungus. Peters LP, Teixeira-Silva NS, Bini AP, Silva MML, Moraes N, Crestana GS, Creste S, Azevedo RA, Carvalho G, Monteiro-Vitorello CB. Fungal Biol; 2020 Dec 30; 124(12):1039-1051. PubMed ID: 33213784 [Abstract] [Full Text] [Related]
56. Pathogen resistance was negatively regulated by the NAC transcription factor ScATAF1 in sugarcane. Wang H, Qin L, Feng C, Wu M, Zhong H, Liu J, Wu Q, Que Y. Plant Physiol Biochem; 2024 Aug 30; 213():108828. PubMed ID: 38896914 [Abstract] [Full Text] [Related]
57. Cytological and Molecular Characterization of ZmWAK-Mediated Head-Smut Resistance in Maize. Zhang N, Zhang B, Zuo W, Xing Y, Konlasuk S, Tan G, Zhang Q, Ye J, Xu M. Mol Plant Microbe Interact; 2017 Jun 30; 30(6):455-465. PubMed ID: 28358622 [Abstract] [Full Text] [Related]
58. ScAOC1, an allene oxide cyclase gene, confers defense response to biotic and abiotic stresses in sugarcane. Sun T, Cen G, You C, Lou W, Wang Z, Su W, Wang W, Li D, Que Y, Su Y. Plant Cell Rep; 2020 Dec 30; 39(12):1785-1801. PubMed ID: 33001313 [Abstract] [Full Text] [Related]
59. Enhanced Resistance to Fungal and Bacterial Diseases Due to Overexpression of BSR1, a Rice RLCK, in Sugarcane, Tomato, and Torenia. Maeda S, Ackley W, Yokotani N, Sasaki K, Ohtsubo N, Oda K, Mori M. Int J Mol Sci; 2023 Feb 11; 24(4):. PubMed ID: 36835053 [Abstract] [Full Text] [Related]
60. Transcriptome profile analysis of sugarcane responses to Sporisorium scitaminea infection using Solexa sequencing technology. Wu Q, Xu L, Guo J, Su Y, Que Y. Biomed Res Int; 2013 Feb 11; 2013():298920. PubMed ID: 24288673 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]