These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
596 related items for PubMed ID: 29754231
21. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Albadri S, Del Bene F, Revenu C. Methods; 2017 May 15; 121-122():77-85. PubMed ID: 28300641 [Abstract] [Full Text] [Related]
22. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. Yang H, Ren S, Yu S, Pan H, Li T, Ge S, Zhang J, Xia N. Int J Mol Sci; 2020 Sep 04; 21(18):. PubMed ID: 32899704 [Abstract] [Full Text] [Related]
25. Co-expression of Cas9 and single-guided RNAs in Escherichia coli streamlines production of Cas9 ribonucleoproteins. Qiao J, Li W, Lin S, Sun W, Ma L, Liu Y. Commun Biol; 2019 Sep 04; 2():161. PubMed ID: 31069270 [Abstract] [Full Text] [Related]
26. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Laughery MF, Hunter T, Brown A, Hoopes J, Ostbye T, Shumaker T, Wyrick JJ. Yeast; 2015 Dec 04; 32(12):711-20. PubMed ID: 26305040 [Abstract] [Full Text] [Related]
29. CRISPR/Cas9 in Genome Editing and Beyond. Wang H, La Russa M, Qi LS. Annu Rev Biochem; 2016 Jun 02; 85():227-64. PubMed ID: 27145843 [Abstract] [Full Text] [Related]
31. Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes. Meccariello A, Monti SM, Romanelli A, Colonna R, Primo P, Inghilterra MG, Del Corsano G, Ramaglia A, Iazzetti G, Chiarore A, Patti F, Heinze SD, Salvemini M, Lindsay H, Chiavacci E, Burger A, Robinson MD, Mosimann C, Bopp D, Saccone G. Sci Rep; 2017 Aug 30; 7(1):10061. PubMed ID: 28855635 [Abstract] [Full Text] [Related]
32. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Staahl BT, Benekareddy M, Coulon-Bainier C, Banfal AA, Floor SN, Sabo JK, Urnes C, Munares GA, Ghosh A, Doudna JA. Nat Biotechnol; 2017 May 30; 35(5):431-434. PubMed ID: 28191903 [Abstract] [Full Text] [Related]
33. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB, Bacchetta R, Tsalenko A, Dellinger D, Bruhn L, Porteus MH. Nat Biotechnol; 2015 Sep 30; 33(9):985-989. PubMed ID: 26121415 [Abstract] [Full Text] [Related]
34. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Petri K, Zhang W, Ma J, Schmidts A, Lee H, Horng JE, Kim DY, Kurt IC, Clement K, Hsu JY, Pinello L, Maus MV, Joung JK, Yeh JJ. Nat Biotechnol; 2022 Feb 30; 40(2):189-193. PubMed ID: 33927418 [Abstract] [Full Text] [Related]
35. Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. Liu W, Rudis MR, Cheplick MH, Millwood RJ, Yang JP, Ondzighi-Assoume CA, Montgomery GA, Burris KP, Mazarei M, Chesnut JD, Stewart CN. Plant Cell Rep; 2020 Feb 30; 39(2):245-257. PubMed ID: 31728703 [Abstract] [Full Text] [Related]
37. Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines. Wassef M, Luscan A, Battistella A, Le Corre S, Li H, Wallace MR, Vidaud M, Margueron R. Methods; 2017 May 15; 121-122():45-54. PubMed ID: 28499832 [Abstract] [Full Text] [Related]
38. Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing. Kelkar A, Zhu Y, Groth T, Stolfa G, Stablewski AB, Singhi N, Nemeth M, Neelamegham S. Mol Ther; 2020 Jan 08; 28(1):29-41. PubMed ID: 31601489 [Abstract] [Full Text] [Related]