These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


596 related items for PubMed ID: 29754231

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42. Delivery of CRISPR-Cas12a Ribonucleoprotein Complex for Genome Editing in an Embryogenic Citrus Cell Line.
    Fang H, Culver JN, Niedz RP, Qi Y.
    Methods Mol Biol; 2023; 2653():153-171. PubMed ID: 36995625
    [Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45. mCAL: A New Approach for Versatile Multiplex Action of Cas9 Using One sgRNA and Loci Flanked by a Programmed Target Sequence.
    Finnigan GC, Thorner J.
    G3 (Bethesda); 2016 Jul 07; 6(7):2147-56. PubMed ID: 27185399
    [Abstract] [Full Text] [Related]

  • 46. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system.
    Chen X, Lu X, Shu N, Wang S, Wang J, Wang D, Guo L, Ye W.
    Sci Rep; 2017 Mar 13; 7():44304. PubMed ID: 28287154
    [Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. Efficient multiplex genome editing by CRISPR/Cas9 in common wheat.
    Li J, Zhang S, Zhang R, Gao J, Qi Y, Song G, Li W, Li Y, Li G.
    Plant Biotechnol J; 2021 Mar 13; 19(3):427-429. PubMed ID: 33150679
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. A robust and practical CRISPR/crRNA screening system for soybean cultivar editing using LbCpf1 ribonucleoproteins.
    Kim H, Choi J.
    Plant Cell Rep; 2021 Jun 13; 40(6):1059-1070. PubMed ID: 32945949
    [Abstract] [Full Text] [Related]

  • 52. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective.
    Song R, Zhai Q, Sun L, Huang E, Zhang Y, Zhu Y, Guo Q, Tian Y, Zhao B, Lu H.
    Appl Microbiol Biotechnol; 2019 Sep 13; 103(17):6919-6932. PubMed ID: 31332488
    [Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55. [Genome editing in plants directed by CRISPR/Cas ribonucleoprotein complexes].
    Li X, Shi W, Geng LZ, Xu JP.
    Yi Chuan; 2020 Jun 20; 42(6):556-564. PubMed ID: 32694114
    [Abstract] [Full Text] [Related]

  • 56. In Silico Meets In Vivo: Towards Computational CRISPR-Based sgRNA Design.
    Chuai GH, Wang QL, Liu Q.
    Trends Biotechnol; 2017 Jan 20; 35(1):12-21. PubMed ID: 27418421
    [Abstract] [Full Text] [Related]

  • 57. Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9.
    Yumlu S, Stumm J, Bashir S, Dreyer AK, Lisowski P, Danner E, Kühn R.
    Methods; 2017 May 15; 121-122():29-44. PubMed ID: 28522326
    [Abstract] [Full Text] [Related]

  • 58. Poly-sgRNA/siRNA ribonucleoprotein nanoparticles for targeted gene disruption.
    Ha JS, Lee JS, Jeong J, Kim H, Byun J, Kim SA, Lee HJ, Chung HS, Lee JB, Ahn DR.
    J Control Release; 2017 Mar 28; 250():27-35. PubMed ID: 28167287
    [Abstract] [Full Text] [Related]

  • 59. Guide RNA engineering for versatile Cas9 functionality.
    Nowak CM, Lawson S, Zerez M, Bleris L.
    Nucleic Acids Res; 2016 Nov 16; 44(20):9555-9564. PubMed ID: 27733506
    [Abstract] [Full Text] [Related]

  • 60. CRISPR as a strong gene editing tool.
    Shen S, Loh TJ, Shen H, Zheng X, Shen H.
    BMB Rep; 2017 Jan 16; 50(1):20-24. PubMed ID: 27616359
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 30.