These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
493 related items for PubMed ID: 29754612
1. Development of extremely stable dual functionalized gold nanoparticles for effective colorimetric detection of clenbuterol and ractopamine in human urine samples. Simon T, Shellaiah M, Steffi P, Sun KW, Ko FH. Anal Chim Acta; 2018 Sep 06; 1023():96-104. PubMed ID: 29754612 [Abstract] [Full Text] [Related]
2. Nanodiamonds conjugated to gold nanoparticles for colorimetric detection of clenbuterol and chromium(III) in urine. Shellaiah M, Simon T, Venkatesan P, Sun KW, Ko FH, Wu SP. Mikrochim Acta; 2017 Dec 20; 185(1):74. PubMed ID: 29594526 [Abstract] [Full Text] [Related]
3. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. Kang J, Zhang Y, Li X, Miao L, Wu A. ACS Appl Mater Interfaces; 2016 Jan 13; 8(1):1-5. PubMed ID: 26673452 [Abstract] [Full Text] [Related]
4. Visual Screening and Colorimetric Determination of Clenbuterol and Ractopamine Using Unmodified Gold Nanoparticles as Probe. Luo Y, Liu X, Guo J, Gao H, Li Y, Xu J, Shen F, Sun C. J Nanosci Nanotechnol; 2016 Jan 13; 16(1):548-54. PubMed ID: 27398486 [Abstract] [Full Text] [Related]
5. Colorimetric detection of ractopamine and salbutamol using gold nanoparticles functionalized with melamine as a probe. Zhou Y, Wang P, Su X, Zhao H, He Y. Talanta; 2013 Aug 15; 112():20-5. PubMed ID: 23708531 [Abstract] [Full Text] [Related]
6. The fabrication of nanochain structure of gold nanoparticles and its application in ractopamine sensing. Duan J, He D, Wang W, Liu Y, Wu H, Wang Y, Fu M, Li S. Talanta; 2013 Oct 15; 115():992-8. PubMed ID: 24054693 [Abstract] [Full Text] [Related]
7. Colorimetric sensing of clenbuterol using gold nanoparticles in the presence of melamine. Zhang X, Zhao H, Xue Y, Wu Z, Zhang Y, He Y, Li X, Yuan Z. Biosens Bioelectron; 2012 Apr 15; 34(1):112-7. PubMed ID: 22341861 [Abstract] [Full Text] [Related]
8. Gold nanoparticle-based colorimetric ELISA for quantification of ractopamine. Han S, Zhou T, Yin B, He P. Mikrochim Acta; 2018 Mar 07; 185(4):210. PubMed ID: 29594705 [Abstract] [Full Text] [Related]
9. A Nanosensor Based on Carbon Dots for Recovered Fluorescence Detection Clenbuterol in Pork Samples. Liu Y, Lu Q, Hu X, Wang H, Li H, Zhang Y, Yao S. J Fluoresc; 2017 Sep 07; 27(5):1847-1853. PubMed ID: 28634884 [Abstract] [Full Text] [Related]
10. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine. Bagci PO, Wang YC, Gunasekaran S. J Food Sci; 2015 Sep 07; 80(9):N2071-8. PubMed ID: 26239641 [Abstract] [Full Text] [Related]
11. Rapid and naked-eye colorimetric detection of ultra trace sumatriptan in drinking water, saliva, and human urine samples based on the aggregation of gold nanoparticles. Minaee S, Reza Sohrabi M, Mortazavinik S. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec 05; 302():123039. PubMed ID: 37390721 [Abstract] [Full Text] [Related]
12. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Kumar N, Seth R, Kumar H. Anal Biochem; 2014 Jul 01; 456():43-9. PubMed ID: 24727351 [Abstract] [Full Text] [Related]
13. Assembly of 6-aza-2-thiothymine on gold nanoparticles for selective and sensitive colorimetric detection of pencycuron in water and food samples. Kailasa SK, Nguyen TP, Baek SH, Tu Phan LM, Rafique R, Park TJ. Talanta; 2019 Dec 01; 205():120087. PubMed ID: 31450484 [Abstract] [Full Text] [Related]
14. Highly luminescent green-emitting Au nanocluster-based multiplex lateral flow immunoassay for ultrasensitive detection of clenbuterol and ractopamine. Peng T, Wang J, Zhao S, Zeng Y, Zheng P, Liang D, Mari GM, Jiang H. Anal Chim Acta; 2018 Dec 21; 1040():143-149. PubMed ID: 30327104 [Abstract] [Full Text] [Related]
15. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. António M, Ferreira R, Vitorino R, Daniel-da-Silva AL. Talanta; 2020 Jul 01; 214():120868. PubMed ID: 32278414 [Abstract] [Full Text] [Related]
16. A simple and rapid creatinine sensing via DLS selectivity, using calix[4]arene thiol functionalized gold nanoparticles. Sutariya PG, Pandya A, Lodha A, Menon SK. Talanta; 2016 Jan 15; 147():590-7. PubMed ID: 26592650 [Abstract] [Full Text] [Related]
17. Colorimetric sensor for cysteine in human urine based on novel gold nanoparticles. Zhang Y, Jiang J, Li M, Gao P, Zhou Y, Zhang G, Shuang S, Dong C. Talanta; 2016 Dec 01; 161():520-527. PubMed ID: 27769441 [Abstract] [Full Text] [Related]
18. Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes. Zhang L, Xu C, Liu C, Li B. Anal Chim Acta; 2014 Jan 27; 809():123-7. PubMed ID: 24418142 [Abstract] [Full Text] [Related]
19. Colorimetric detection of influenza A virus using antibody-functionalized gold nanoparticles. Liu Y, Zhang L, Wei W, Zhao H, Zhou Z, Zhang Y, Liu S. Analyst; 2015 Jun 21; 140(12):3989-95. PubMed ID: 25899840 [Abstract] [Full Text] [Related]
20. Colorimetric detection of the β-agonist ractopamine in animal feed, tissue and urine samples using gold-silver alloy nanoparticles modified with sulfanilic acid. Hu X, Du J, Pan J, Wang F, Gong D, Zhang G. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 Jan 21; 36(1):35-45. PubMed ID: 30517825 [Abstract] [Full Text] [Related] Page: [Next] [New Search]