These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Leaf transpiration plays a role in phosphorus acquisition among a large set of chickpea genotypes. Pang J, Zhao H, Bansal R, Bohuon E, Lambers H, Ryan MH, Siddique KHM. Plant Cell Environ; 2018 Sep; 41(9):2069-2079. PubMed ID: 29315636 [Abstract] [Full Text] [Related]
4. Plant phosphorus status has a limited influence on the concentration of phosphorus-mobilising carboxylates in the rhizosphere of chickpea. Wouterlood M, Lambers H, Veneklaas EJ. Funct Plant Biol; 2005 Apr; 32(2):153-159. PubMed ID: 32689119 [Abstract] [Full Text] [Related]
5. Rhizosphere carboxylate concentrations of chickpea are affected by soil bulk density. Wouterlood M, Lambers H, Veneklaas EJ. Plant Biol (Stuttg); 2006 Mar; 8(2):198-203. PubMed ID: 16547864 [Abstract] [Full Text] [Related]
7. Root carboxylate exudation capacity under phosphorus stress does not improve grain yield in green gram. Pandey R, Meena SK, Krishnapriya V, Ahmad A, Kishora N. Plant Cell Rep; 2014 Jun; 33(6):919-28. PubMed ID: 24493254 [Abstract] [Full Text] [Related]
8. Leaf manganese accumulation and phosphorus-acquisition efficiency. Lambers H, Hayes PE, Laliberté E, Oliveira RS, Turner BL. Trends Plant Sci; 2015 Feb; 20(2):83-90. PubMed ID: 25466977 [Abstract] [Full Text] [Related]
13. Enhanced nodulation and phosphorus acquisition from sparingly-soluble iron phosphate upon treatment with arbuscular mycorrhizal fungi in chickpea. Pang J, Ryan MH, Wen Z, Lambers H, Liu Y, Zhang Y, Tueux G, Jenkins S, Mickan B, Wong WS, Yong JWH, Siddique KHM. Physiol Plant; 2023 Mar; 175(2):e13873. PubMed ID: 36762694 [Abstract] [Full Text] [Related]
14. Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration at very low phosphorus availability. Huang G, Hayes PE, Ryan MH, Pang J, Lambers H. Oecologia; 2017 Nov; 185(3):387-400. PubMed ID: 28924626 [Abstract] [Full Text] [Related]
15. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. Wen Z, Li H, Shen Q, Tang X, Xiong C, Li H, Pang J, Ryan MH, Lambers H, Shen J. New Phytol; 2019 Jul; 223(2):882-895. PubMed ID: 30932187 [Abstract] [Full Text] [Related]
17. Acid phosphatase role in chickpea/maize intercropping. Li SM, Li L, Zhang FS, Tang C. Ann Bot; 2004 Aug; 94(2):297-303. PubMed ID: 15238349 [Abstract] [Full Text] [Related]
18. Microbial consortium inoculant increases pasture grasses yield in low-phosphorus soil by influencing root morphology, rhizosphere carboxylate exudation and mycorrhizal colonisation. Tshewang S, Rengel Z, Siddique KH, Solaiman ZM. J Sci Food Agric; 2022 Jan 30; 102(2):540-549. PubMed ID: 34146349 [Abstract] [Full Text] [Related]
20. Adaptive shoot and root responses collectively enhance growth at optimum temperature and limited phosphorus supply of three herbaceous legume species. Suriyagoda LD, Ryan MH, Renton M, Lambers H. Ann Bot; 2012 Oct 30; 110(5):959-68. PubMed ID: 22847657 [Abstract] [Full Text] [Related] Page: [Next] [New Search]