These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 29761495

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Tolerance of three grain legume species to transient waterlogging.
    Malik AI, Ailewe TI, Erskine W.
    AoB Plants; 2015 Apr 22; 7():. PubMed ID: 25902834
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Conversion of lipids into carbohydrates rescues energy insufficiency in rapeseed germination under waterlogging stress.
    Yang H, Bai C, Ai X, Yu H, Xu Z, Wang J, Kuai J, Zhao J, Wang B, Zhou G.
    Physiol Plant; 2024 Apr 22; 176(5):e14576. PubMed ID: 39400914
    [Abstract] [Full Text] [Related]

  • 6. Tolerance of four grain legume species to waterlogging, hypoxia and anoxia at germination and recovery.
    Wiraguna E, Malik AI, Colmer TD, Erskine W.
    AoB Plants; 2021 Aug 22; 13(4):plab052. PubMed ID: 34476049
    [Abstract] [Full Text] [Related]

  • 7. Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance.
    Wang WQ, Møller IM, Song SQ.
    J Proteomics; 2012 Dec 21; 77():68-86. PubMed ID: 22796356
    [Abstract] [Full Text] [Related]

  • 8. Tolerant and Susceptible Sesame Genotypes Reveal Waterlogging Stress Response Patterns.
    Wang L, Li D, Zhang Y, Gao Y, Yu J, Wei X, Zhang X.
    PLoS One; 2016 Dec 21; 11(3):e0149912. PubMed ID: 26934874
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes.
    Dametto A, Sperotto RA, Adamski JM, Blasi ÉA, Cargnelutti D, de Oliveira LF, Ricachenevsky FK, Fregonezi JN, Mariath JE, da Cruz RP, Margis R, Fett JP.
    Plant Sci; 2015 Sep 21; 238():1-12. PubMed ID: 26259169
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Transcriptomic Insights into Mechanisms of Early Seed Maturation in the Garden Pea (Pisum sativum L.).
    Malovichko YV, Shtark OY, Vasileva EN, Nizhnikov AA, Antonets KS.
    Cells; 2020 Mar 23; 9(3):. PubMed ID: 32210065
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. De novo assembly and characterisation of the field pea transcriptome using RNA-Seq.
    Sudheesh S, Sawbridge TI, Cogan NO, Kennedy P, Forster JW, Kaur S.
    BMC Genomics; 2015 Aug 16; 16(1):611. PubMed ID: 26275991
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Increasing the rate of drying reduces metabolic imbalance, lipid peroxidation and critical water content in radicles of garden pea (Pisum sativum L.).
    Ntuli TM, Pammenter NW, Berjak P.
    Biol Res; 2013 Aug 16; 46(2):121-30. PubMed ID: 23959009
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.