These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
169 related items for PubMed ID: 29767461
21. Evolutionary and ecological processes influencing chemical defense variation in an aposematic and mimetic Heliconius butterfly. Mattila ALK, Jiggins CD, Opedal ØH, Montejo-Kovacevich G, Pinheiro de Castro ÉC, McMillan WO, Bacquet C, Saastamoinen M. PeerJ; 2021; 9():e11523. PubMed ID: 34178447 [Abstract] [Full Text] [Related]
22. Signal honesty and predation risk among a closely related group of aposematic species. María Arenas L, Walter D, Stevens M. Sci Rep; 2015 Jun 05; 5():11021. PubMed ID: 26046332 [Abstract] [Full Text] [Related]
23. Condition dependence in biosynthesized chemical defenses of an aposematic and mimetic Heliconius butterfly. Mattila ALK, Jiggins CD, Saastamoinen M. Ecol Evol; 2022 Jul 05; 12(6):e9041. PubMed ID: 35784031 [Abstract] [Full Text] [Related]
24. Soil nutrient adequacy for optimal cassava growth, implications on cyanogenic glucoside production: A case of konzo-affected Mtwara region, Tanzania. Imakumbili MLE, Semu E, Semoka JMR, Abass A, Mkamilo G. PLoS One; 2019 Jul 05; 14(5):e0216708. PubMed ID: 31083702 [Abstract] [Full Text] [Related]
25. Colonization of Northern Europe by Zygaena filipendulae (Lepidoptera). Zagrobelny M, Dalsten L, Hille A. Ecol Evol; 2019 Apr 05; 9(8):4796-4804. PubMed ID: 31031945 [Abstract] [Full Text] [Related]
26. Evolution of the Biosynthetic Pathway for Cyanogenic Glucosides in Lepidoptera. Zagrobelny M, Jensen MK, Vogel H, Feyereisen R, Bak S. J Mol Evol; 2018 Jul 05; 86(6):379-394. PubMed ID: 29974176 [Abstract] [Full Text] [Related]
27. Plant tissue analysis as a tool for predicting fertiliser needs for low cyanogenic glucoside levels in cassava roots: An assessment of its possible use. Imakumbili MLE, Semu E, Semoka JMR, Abass A, Mkamilo G. PLoS One; 2020 Jul 05; 15(2):e0228641. PubMed ID: 32053630 [Abstract] [Full Text] [Related]
29. Evolutionary constraints of warning signals: A genetic trade-off between the efficacy of larval and adult warning coloration can maintain variation in signal expression. Lindstedt C, Schroderus E, Lindström L, Mappes T, Mappes J. Evolution; 2016 Nov 05; 70(11):2562-2572. PubMed ID: 27624666 [Abstract] [Full Text] [Related]
30. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Rönkä K, Valkonen JK, Nokelainen O, Rojas B, Gordon S, Burdfield-Steel E, Mappes J. Ecol Lett; 2020 Nov 05; 23(11):1654-1663. PubMed ID: 32881319 [Abstract] [Full Text] [Related]
32. Warning displays in spiny animals: one (more) evolutionary route to aposematism. Speed MP, Ruxton GD. Evolution; 2005 Dec 05; 59(12):2499-508. PubMed ID: 16526498 [Abstract] [Full Text] [Related]
33. The price of defence: toxins, visual signals and oxidative state in an aposematic butterfly. Blount JD, Rowland HM, Mitchell C, Speed MP, Ruxton GD, Endler JA, Brower LP. Proc Biol Sci; 2023 Jan 25; 290(1991):20222068. PubMed ID: 36651049 [Abstract] [Full Text] [Related]
34. Predation risk drives aposematic signal conformity. Walker H, Caro T, Bell D, Ferguson A, Stankowich T. Evolution; 2023 Nov 02; 77(11):2492-2503. PubMed ID: 37695267 [Abstract] [Full Text] [Related]
35. Response of adult dragonflies to artificial prey of different size and colour. Duong TM, Gomez AB, Sherratt TN. PLoS One; 2017 Nov 02; 12(6):e0179483. PubMed ID: 28662042 [Abstract] [Full Text] [Related]
36. Conditions for the spread of conspicuous warning signals: a numerical model with novel insights. Puurtinen M, Kaitala V. Evolution; 2006 Nov 02; 60(11):2246-56. PubMed ID: 17236418 [Abstract] [Full Text] [Related]