These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Decrease of serum buffering capacity associated with malignant neoplasms. Nakamura K, Nakajima Y, Nakamura Y, Ogiwara H, Koide A. Cancer Detect Prev; 1988; 13(3-4):175-87. PubMed ID: 2977297 [Abstract] [Full Text] [Related]
3. PFK inhibition test for cancer detection: clinical applications and mechanisms of PFK inhibition. Nakamura K, Kituta T, Nakamura Y, Nakajima Y, Kobayashi K, Uchida T. Cancer Detect Prev; 1987; 10(1-2):37-55. PubMed ID: 2952272 [Abstract] [Full Text] [Related]
4. [Regulatory mechanism of phosphofructokinase in rabbit dental pulp]. Negishi T. Nichidai Koko Kagaku; 1990 Mar; 16(1):37-43. PubMed ID: 2152004 [Abstract] [Full Text] [Related]
6. A new cancer marker: a possible cancer screening method based on the suppression of phosphofructokinase by sera from cancer patients. Nakamura K, Kituta T, Takahashi T, Nakamura Y, Nakajima Y. Cancer Detect Prev; 1985 Mar; 8(1-2):207-18. PubMed ID: 2933146 [Abstract] [Full Text] [Related]
7. Isozymic composition and regulatory properties of phosphofructokinase from well-differentiated and anaplastic medullary thyroid carcinomas of the rat. Oskam R, Rijksen G, Staal GE, Vora S. Cancer Res; 1985 Jan; 45(1):135-42. PubMed ID: 3155492 [Abstract] [Full Text] [Related]
8. ATP-dependent 6-phosphofructokinase from the hyperthermophilic bacterium Thermotoga maritima: characterization of an extremely thermophilic, allosterically regulated enzyme. Hansen T, Musfeldt M, Schönheit P. Arch Microbiol; 2002 May; 177(5):401-9. PubMed ID: 11976749 [Abstract] [Full Text] [Related]
9. Phosphofructokinase of calf trabecular meshwork. Anderson PJ, Karageuzian LN, Epstein DL. Invest Ophthalmol Vis Sci; 1984 Nov; 25(11):1262-6. PubMed ID: 6238014 [Abstract] [Full Text] [Related]
10. [Suppression of phosphofructokinase (PFK) by sera from cancer patients, and mechanism of the antagonistic effect of PSK]. Nakamura K, Nakajima Y, Nomoto K. Gan To Kagaku Ryoho; 1986 Apr; 13(4 Pt 1):970-6. PubMed ID: 2938549 [Abstract] [Full Text] [Related]
11. Fructose-2,6-bisphosphate counteracts guanidinium chloride-, thermal-, and ATP-induced dissociation of skeletal muscle key glycolytic enzyme 6-phosphofructo-1-kinase: A structural mechanism for PFK allosteric regulation. Zancan P, Almeida FV, Faber-Barata J, Dellias JM, Sola-Penna M. Arch Biochem Biophys; 2007 Nov 15; 467(2):275-82. PubMed ID: 17923106 [Abstract] [Full Text] [Related]
12. ATP and fructose-2,6-bisphosphate regulate skeletal muscle 6-phosphofructo-1-kinase by altering its quaternary structure. Zancan P, Marinho-Carvalho MM, Faber-Barata J, Dellias JM, Sola-Penna M. IUBMB Life; 2008 Aug 15; 60(8):526-33. PubMed ID: 18465796 [Abstract] [Full Text] [Related]
13. Regulatory properties of 6-phosphofructokinase and control of glycolysis in boar spermatozoa. Kamp G, Schmidt H, Stypa H, Feiden S, Mahling C, Wegener G. Reproduction; 2007 Jan 15; 133(1):29-40. PubMed ID: 17244730 [Abstract] [Full Text] [Related]
14. pH-dependent temperature sensitivity of rat lens phosphofructokinase. Cheng HM, Chylack LT. Invest Ophthalmol; 1976 Jun 15; 15(6):505-9. PubMed ID: 6404 [Abstract] [Full Text] [Related]
15. Purification, molecular and kinetic characterization of phosphofructokinase-1 from the yeast Schizosaccharomyces pombe: evidence for an unusual subunit composition. Reuter R, Naumann M, Bär J, Haferburg D, Kopperschläger G. Yeast; 2000 Oct 15; 16(14):1273-85. PubMed ID: 11015725 [Abstract] [Full Text] [Related]
16. In silico exploration of the fructose-6-phosphate phosphorylation step in glycolysis: genomic evidence of the coexistence of an atypical ATP-dependent along with a PPi-dependent phosphofructokinase in Propionibacterium freudenreichii subsp. shermanii. Meurice G, Deborde C, Jacob D, Falentin H, Boyaval P, Dimova D. In Silico Biol; 2004 Oct 15; 4(4):517-28. PubMed ID: 15507000 [Abstract] [Full Text] [Related]
17. Phosphofructokinase from liver of the rainbow trout, Oncorhynchus mykiss. Su JY, Storey KB. Arch Biochem Biophys; 1993 Apr 15; 302(1):49-55. PubMed ID: 8470907 [Abstract] [Full Text] [Related]
18. Early post-mortem AMP-activated protein kinase (AMPK) activation leads to phosphofructokinase-2 and -1 (PFK-2 and PFK-1) phosphorylation and the development of pale, soft, and exudative (PSE) conditions in porcine longissimus muscle. Shen QW, Means WJ, Underwood KR, Thompson SA, Zhu MJ, McCormick RJ, Ford SP, Ellis M, Du M. J Agric Food Chem; 2006 Jul 26; 54(15):5583-9. PubMed ID: 16848549 [Abstract] [Full Text] [Related]
19. Skeletal muscle glycolytic capacity and phosphofructokinase regulation in horses with polysaccharide storage myopathy. Valberg SJ, Townsend D, Mickelson JR. Am J Vet Res; 1998 Jun 26; 59(6):782-5. PubMed ID: 9622752 [Abstract] [Full Text] [Related]
20. Alterations in the activity and isozymic profile of human phosphofructokinase during malignant transformation in vivo and in vitro: transformation- and progression-linked discriminants of malignancy. Vora S, Halper JP, Knowles DM. Cancer Res; 1985 Jul 26; 45(7):2993-3001. PubMed ID: 3159473 [Abstract] [Full Text] [Related] Page: [Next] [New Search]