These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Functional differentiation of 3-ketosteroid Δ1-dehydrogenase isozymes in Rhodococcus ruber strain Chol-4. Guevara G, Fernández de Las Heras L, Perera J, Navarro Llorens JM. Microb Cell Fact; 2017 Mar 14; 16(1):42. PubMed ID: 28288625 [Abstract] [Full Text] [Related]
3. Two-Step Bioprocess for Reducing Nucleus Degradation in Phytosterol Bioconversion by Mycobacterium neoaurum NwIB-R10hsd4A. Wang X, Hua C, Xu X, Wei D. Appl Biochem Biotechnol; 2019 May 14; 188(1):138-146. PubMed ID: 30370444 [Abstract] [Full Text] [Related]
4. Loop pathways are responsible for tuning the accumulation of C19- and C22-sterol intermediates in the mycobacterial phytosterol degradation pathway. Song S, He J, Gao M, Huang Y, Cheng X, Su Z. Microb Cell Fact; 2023 Jan 30; 22(1):19. PubMed ID: 36710325 [Abstract] [Full Text] [Related]
5. Improving the production of 9α-hydroxy-4-androstene-3,17-dione from phytosterols by 3-ketosteroid-Δ1-dehydrogenase deletions and multiple genetic modifications in Mycobacterium fortuitum. Liu X, Zhang J, Yuan C, Du G, Han S, Shi J, Sun J, Zhang B. Microb Cell Fact; 2023 Mar 16; 22(1):53. PubMed ID: 36922830 [Abstract] [Full Text] [Related]
6. Molecular characterization of three 3-ketosteroid-Δ(1)-dehydrogenase isoenzymes of Rhodococcus ruber strain Chol-4. Fernández de las Heras L, van der Geize R, Drzyzga O, Perera J, María Navarro Llorens J. J Steroid Biochem Mol Biol; 2012 Nov 16; 132(3-5):271-81. PubMed ID: 22771584 [Abstract] [Full Text] [Related]
7. Efficient conversion of phytosterols into 4-androstene-3,17-dione and its C1,2-dehydrogenized and 9α-hydroxylated derivatives by engineered Mycobacteria. Li X, Chen T, Peng F, Song S, Yu J, Sidoine DN, Cheng X, Huang Y, He Y, Su Z. Microb Cell Fact; 2021 Aug 16; 20(1):158. PubMed ID: 34399754 [Abstract] [Full Text] [Related]
8. Engineered 3-Ketosteroid 9α-Hydroxylases in Mycobacterium neoaurum: an Efficient Platform for Production of Steroid Drugs. Liu HH, Xu LQ, Yao K, Xiong LB, Tao XY, Liu M, Wang FQ, Wei DZ. Appl Environ Microbiol; 2018 Jul 15; 84(14):. PubMed ID: 29728384 [Abstract] [Full Text] [Related]
9. Accumulation of androstadiene-dione by overexpression of heterologous 3-ketosteroid Δ1-dehydrogenase in Mycobacterium neoaurum NwIB-01. Wei W, Fan SY, Wang FQ, Wei DZ. World J Microbiol Biotechnol; 2014 Jul 15; 30(7):1947-54. PubMed ID: 24510385 [Abstract] [Full Text] [Related]
10. Purification, characterization, and application of a high activity 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum DSM 1381. Zhang R, Xu X, Cao H, Yuan C, Yuminaga Y, Zhao S, Shi J, Zhang B. Appl Microbiol Biotechnol; 2019 Aug 15; 103(16):6605-6616. PubMed ID: 31289904 [Abstract] [Full Text] [Related]
11. A mutant form of 3-ketosteroid-Δ(1)-dehydrogenase gives altered androst-1,4-diene-3, 17-dione/androst-4-ene-3,17-dione molar ratios in steroid biotransformations by Mycobacterium neoaurum ST-095. Shao M, Zhang X, Rao Z, Xu M, Yang T, Li H, Xu Z, Yang S. J Ind Microbiol Biotechnol; 2016 May 15; 43(5):691-701. PubMed ID: 26886757 [Abstract] [Full Text] [Related]
12. Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid Delta(1)-dehydrogenase isoenzyme. van der Geize R, Hessels GI, Dijkhuizen L. Microbiology (Reading); 2002 Oct 15; 148(Pt 10):3285-3292. PubMed ID: 12368462 [Abstract] [Full Text] [Related]
13. Characterization of new recombinant 3-ketosteroid-Δ1-dehydrogenases for the biotransformation of steroids. Wang X, Feng J, Zhang D, Wu Q, Zhu D, Ma Y. Appl Microbiol Biotechnol; 2017 Aug 15; 101(15):6049-6060. PubMed ID: 28634849 [Abstract] [Full Text] [Related]
14. [Overexpressing 3-ketosteroid-Δ1-dehydrogenase for degrading phytosterols into androst-1,4-diene-3,17-dione]. Zhang L, Zhang X, Shao M, Chen R, Rao Z, Li H, Xu Z. Sheng Wu Gong Cheng Xue Bao; 2015 Nov 15; 31(11):1589-600. PubMed ID: 26939442 [Abstract] [Full Text] [Related]
16. Characterization and engineering of 3-ketosteroid-△1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols. Yao K, Xu LQ, Wang FQ, Wei DZ. Metab Eng; 2014 Jul 15; 24():181-91. PubMed ID: 24831710 [Abstract] [Full Text] [Related]
17. Bioconversion of 4-androstene-3,17-dione to androst-1,4-diene-3,17-dione by recombinant Bacillus subtilis expressing ksdd gene encoding 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum JC-12. Zhang W, Shao M, Rao Z, Xu M, Zhang X, Yang T, Li H, Xu Z. J Steroid Biochem Mol Biol; 2013 May 15; 135():36-42. PubMed ID: 23298646 [Abstract] [Full Text] [Related]
18. Whole-Genome Analysis of Mycobacterium neoaurum DSM 1381 and the Validation of Two Key Enzymes Affecting C22 Steroid Intermediates in Sterol Metabolism. Zhang J, Zhang R, Song S, Su Z, Shi J, Cao H, Zhang B. Int J Mol Sci; 2023 Mar 24; 24(7):. PubMed ID: 37047121 [Abstract] [Full Text] [Related]
19. Whole-genome and enzymatic analyses of an androstenedione-producing Mycobacterium strain with residual phytosterol-degrading pathways. Wang H, Song S, Peng F, Yang F, Chen T, Li X, Cheng X, He Y, Huang Y, Su Z. Microb Cell Fact; 2020 Oct 02; 19(1):187. PubMed ID: 33008397 [Abstract] [Full Text] [Related]
20. 3-Keto-5alpha-steroid Delta(1)-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism. Knol J, Bodewits K, Hessels GI, Dijkhuizen L, van der Geize R. Biochem J; 2008 Mar 01; 410(2):339-46. PubMed ID: 18031290 [Abstract] [Full Text] [Related] Page: [Next] [New Search]