These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


415 related items for PubMed ID: 29778800

  • 1. Phenotypic and genotypic diversity of Lactobacillus buchneri strains isolated from spoiled, fermented cucumber.
    Daughtry KV, Johanningsmeier SD, Sanozky-Dawes R, Klaenhammer TR, Barrangou R.
    Int J Food Microbiol; 2018 Sep 02; 280():46-56. PubMed ID: 29778800
    [Abstract] [Full Text] [Related]

  • 2. Metabolism of lactic acid in fermented cucumbers by Lactobacillus buchneri and related species, potential spoilage organisms in reduced salt fermentations.
    Johanningsmeier SD, McFeeters RF.
    Food Microbiol; 2013 Sep 02; 35(2):129-35. PubMed ID: 23664264
    [Abstract] [Full Text] [Related]

  • 3. Metabolic footprinting of Lactobacillus buchneri strain LA1147 during anaerobic spoilage of fermented cucumbers.
    Johanningsmeier SD, McFeeters RF.
    Int J Food Microbiol; 2015 Dec 23; 215():40-8. PubMed ID: 26325599
    [Abstract] [Full Text] [Related]

  • 4. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.
    Johanningsmeier SD, Franco W, Perez-Diaz I, McFeeters RF.
    J Food Sci; 2012 Jul 23; 77(7):M397-404. PubMed ID: 22757713
    [Abstract] [Full Text] [Related]

  • 5. Content of xylose, trehalose and l-citrulline in cucumber fermentations and utilization of such compounds by certain lactic acid bacteria.
    Ucar RA, Pérez-Díaz IM, Dean LL.
    Food Microbiol; 2020 Oct 23; 91():103454. PubMed ID: 32539957
    [Abstract] [Full Text] [Related]

  • 6. Comparative genomics of eight Lactobacillus buchneri strains isolated from food spoilage.
    Nethery MA, Henriksen ED, Daughtry KV, Johanningsmeier SD, Barrangou R.
    BMC Genomics; 2019 Nov 27; 20(1):902. PubMed ID: 31775607
    [Abstract] [Full Text] [Related]

  • 7. Role of selected oxidative yeasts and bacteria in cucumber secondary fermentation associated with spoilage of the fermented fruit.
    Franco W, Pérez-Díaz IM.
    Food Microbiol; 2012 Dec 27; 32(2):338-44. PubMed ID: 22986199
    [Abstract] [Full Text] [Related]

  • 8. Anaerobic conversion of lactic acid to acetic acid and 1, 2-propanediol by Lactobacillus buchneri.
    Oude Elferink SJ, Krooneman J, Gottschal JC, Spoelstra SF, Faber F, Driehuis F.
    Appl Environ Microbiol; 2001 Jan 27; 67(1):125-32. PubMed ID: 11133436
    [Abstract] [Full Text] [Related]

  • 9. Bacterial Ecology of Fermented Cucumber Rising pH Spoilage as Determined by Nonculture-Based Methods.
    Medina E, Pérez-Díaz IM, Breidt F, Hayes J, Franco W, Butz N, Azcarate-Peril MA.
    J Food Sci; 2016 Jan 27; 81(1):M121-9. PubMed ID: 26605993
    [Abstract] [Full Text] [Related]

  • 10. Microbial interactions associated with secondary cucumber fermentation.
    Franco W, Pérez-Díaz IM.
    J Appl Microbiol; 2013 Jan 27; 114(1):161-72. PubMed ID: 23013318
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Genotypic and phenotypic diversity among Lactobacillus plantarum and Lactobacillus pentosus isolated from industrial scale cucumber fermentations.
    Pérez-Díaz IM, Johanningsmeier SD, Anekella K, Pagán-Medina CG, Méndez-Sandoval L, Arellano C, Price R, Daughtry KV, Borges M, Bream C, Connelly L, Dieck SE, Levi MT, McMurtrie EK, Smith RE, Theora JC, Wendland P, Gómez-Rodríguez F, Arroyo-López FN.
    Food Microbiol; 2021 Apr 27; 94():103652. PubMed ID: 33279077
    [Abstract] [Full Text] [Related]

  • 14. Exploitation of acid-tolerant microbial species for the utilization of low-cost whey in the production of acetic acid and propylene glycol.
    Veeravalli SS, Mathews AP.
    Appl Microbiol Biotechnol; 2018 Sep 27; 102(18):8023-8033. PubMed ID: 29946931
    [Abstract] [Full Text] [Related]

  • 15. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation.
    Ventimiglia G, Alfonzo A, Galluzzo P, Corona O, Francesca N, Caracappa S, Moschetti G, Settanni L.
    Food Microbiol; 2015 Oct 27; 51():57-68. PubMed ID: 26187828
    [Abstract] [Full Text] [Related]

  • 16. Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches.
    Endo A, Futagawa-Endo Y, Dicks LM.
    Syst Appl Microbiol; 2009 Dec 27; 32(8):593-600. PubMed ID: 19733991
    [Abstract] [Full Text] [Related]

  • 17. Development of a model system for the study of spoilage associated secondary cucumber fermentation during long-term storage.
    Franco W, Pérez-Díaz IM.
    J Food Sci; 2012 Oct 27; 77(10):M586-92. PubMed ID: 22924596
    [Abstract] [Full Text] [Related]

  • 18. Diversity and technological properties of predominant lactic acid bacteria from fermented cassava used for the preparation of Gari, a traditional African food.
    Kostinek M, Specht I, Edward VA, Schillinger U, Hertel C, Holzapfel WH, Franz CM.
    Syst Appl Microbiol; 2005 Aug 27; 28(6):527-40. PubMed ID: 16104351
    [Abstract] [Full Text] [Related]

  • 19. Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia.
    Yu J, Wang WH, Menghe BL, Jiri MT, Wang HM, Liu WJ, Bao QH, Lu Q, Zhang JC, Wang F, Xu HY, Sun TS, Zhang HP.
    J Dairy Sci; 2011 Jul 27; 94(7):3229-41. PubMed ID: 21700007
    [Abstract] [Full Text] [Related]

  • 20. Characteristics of spoilage-associated secondary cucumber fermentation.
    Franco W, Pérez-Díaz IM, Johanningsmeier SD, McFeeters RF.
    Appl Environ Microbiol; 2012 Feb 27; 78(4):1273-84. PubMed ID: 22179234
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.