These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


132 related items for PubMed ID: 2978119

  • 1. Theoretical and experimental study of the time dependent flow of red blood cell suspension through narrow pores.
    Bucherer C, Lelièvre JC, Lacombe C.
    Biorheology; 1988; 25(4):639-49. PubMed ID: 2978119
    [Abstract] [Full Text] [Related]

  • 2. Analysis of red blood cell motion through cylindrical micropores: effects of cell properties.
    Secomb TW, Hsu R.
    Biophys J; 1996 Aug; 71(2):1095-101. PubMed ID: 8842246
    [Abstract] [Full Text] [Related]

  • 3. Flow behavior of neonatal and adult erythrocytes in narrow capillaries.
    Stadler A, Linderkamp O.
    Microvasc Res; 1989 May; 37(3):267-79. PubMed ID: 2733599
    [Abstract] [Full Text] [Related]

  • 4. Roles of cell geometry and cellular viscosity in red cell passage through narrow pores.
    Reinhart WH, Chien S.
    Am J Physiol; 1985 May; 248(5 Pt 1):C473-9. PubMed ID: 3993769
    [Abstract] [Full Text] [Related]

  • 5. Erythrocyte rheology.
    Stuart J.
    J Clin Pathol; 1985 Sep; 38(9):965-77. PubMed ID: 3900147
    [Abstract] [Full Text] [Related]

  • 6. Influence of red cell concentration on filtration of blood cell suspensions.
    Schmalzer EA, Skalak R, Usami S, Vayo M, Chien S.
    Biorheology; 1983 Sep; 20(1):29-40. PubMed ID: 6871424
    [Abstract] [Full Text] [Related]

  • 7. Rheology of leukocytes, leukocyte suspensions, and blood in leukemia. Possible relationship to clinical manifestations.
    Lichtman MA.
    J Clin Invest; 1973 Feb; 52(2):350-8. PubMed ID: 4509637
    [Abstract] [Full Text] [Related]

  • 8. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter.
    Reinke W, Johnson PC, Gaehtgens P.
    Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742
    [Abstract] [Full Text] [Related]

  • 9. Manipulation and flow of biological fluids in straight channels micromachined in silicon.
    Wilding P, Pfahler J, Bau HH, Zemel JN, Kricka LJ.
    Clin Chem; 1994 Jan; 40(1):43-7. PubMed ID: 8287542
    [Abstract] [Full Text] [Related]

  • 10. Flows of red blood cell suspensions through narrow two-dimensional channels.
    Chan T, Jaffrin MY, Seshadri V, Mc Kay C.
    Biorheology; 1982 Jan; 19(1/2):253-67. PubMed ID: 6807368
    [Abstract] [Full Text] [Related]

  • 11. Numerical approach to the motion of a red blood cell in Couette flow.
    Sugihara M, Niimi H.
    Biorheology; 1984 Jan; 21(6):735-49. PubMed ID: 6518286
    [Abstract] [Full Text] [Related]

  • 12. Comparative rheology of nucleated and non-nucleated red blood cells. II. Rheological properties of avian red cells suspensions in narrow capillaries.
    Gaehtgens P, Will G, Schmidt F.
    Pflugers Arch; 1981 Jun; 390(3):283-7. PubMed ID: 7196029
    [Abstract] [Full Text] [Related]

  • 13. Flow characteristics of red cell containing fluids through pores. The effect of filter plugging, a mathematical model.
    Crawford RG, Moss RD, Gruemer HD.
    Biorheology; 1987 Jun; 24(1):63-76. PubMed ID: 3651583
    [Abstract] [Full Text] [Related]

  • 14. Mathematical analysis of the effects of geometric parameters and mechanical properties of erythrocytes on the filterability of nonuniform suspensions.
    Yakovenko EE, Lisovskaya IL, Ataullakhanov FI.
    Membr Cell Biol; 2000 Jun; 13(3):421-35. PubMed ID: 10768492
    [Abstract] [Full Text] [Related]

  • 15. The flow of blood cell suspensions through 3 microns and 5 microns Nuclepore membranes: a comparison of kinetic analysis with scanning electron microscopic examinations.
    Jones JG, Holland BM, Humphrys J, Wardrop CA.
    Br J Haematol; 1985 Mar; 59(3):541-6. PubMed ID: 3970865
    [Abstract] [Full Text] [Related]

  • 16. Determination of the red blood cell apparent membrane elastic modulus from viscometric measurements.
    Drochon A, Barthes-Biesel D, Lacombe C, Lelievre JC.
    J Biomech Eng; 1990 Aug; 112(3):241-9. PubMed ID: 2120513
    [Abstract] [Full Text] [Related]

  • 17. Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity.
    Lázaro GR, Hernández-Machado A, Pagonabarraga I.
    Soft Matter; 2014 Oct 07; 10(37):7195-206. PubMed ID: 25105872
    [Abstract] [Full Text] [Related]

  • 18. [Use of a new rheometer for the study of the filtrability of a suspension of sickled red cells as a function of PO2].
    Martin-Caburi J, Hermann T, Garel MC, Domenget C, Galacteros F, Healy JC, Hanss M, Beuzard Y.
    C R Seances Acad Sci III; 1982 Oct 11; 295(5):355-8. PubMed ID: 6817872
    [Abstract] [Full Text] [Related]

  • 19. Theoretical modeling of filtration of blood cell suspensions.
    Skalak R, Impelluso T, Schmalzer EA, Chien S.
    Biorheology; 1983 Oct 11; 20(1):41-56. PubMed ID: 6871425
    [Abstract] [Full Text] [Related]

  • 20. Shear thinning and shear thickening of a confined suspension of vesicles.
    Nait Ouhra A, Farutin A, Aouane O, Ez-Zahraouy H, Benyoussef A, Misbah C.
    Phys Rev E; 2018 Jan 11; 97(1-1):012404. PubMed ID: 29448354
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.