These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Small Molecule Inhibits Metal-Dependent and -Independent Multifaceted Toxicity of Alzheimer's Disease. Samanta S, Rajasekhar K, Babagond V, Govindaraju T. ACS Chem Neurosci; 2019 Aug 21; 10(8):3611-3621. PubMed ID: 31140779 [Abstract] [Full Text] [Related]
7. Tuning Structures and Properties for Developing Novel Chemical Tools toward Distinct Pathogenic Elements in Alzheimer's Disease. Han J, Lee HJ, Kim KY, Lee SJC, Suh JM, Cho J, Chae J, Lim MH. ACS Chem Neurosci; 2018 Apr 18; 9(4):800-808. PubMed ID: 29283241 [Abstract] [Full Text] [Related]
9. The redox chemistry of the Alzheimer's disease amyloid beta peptide. Smith DG, Cappai R, Barnham KJ. Biochim Biophys Acta; 2007 Aug 18; 1768(8):1976-90. PubMed ID: 17433250 [Abstract] [Full Text] [Related]
10. Two macrocyclic polyamines as modulators of metal-mediated Aβ40 aggregation. Yang Y, Chen T, Zhu S, Gu X, Jia X, Lu Y, Zhu L. Integr Biol (Camb); 2015 Jun 18; 7(6):655-62. PubMed ID: 25968625 [Abstract] [Full Text] [Related]
11. Mechanistic Insight into the Design of Chemical Tools to Control Multiple Pathogenic Features in Alzheimer's Disease. Han J, Du Z, Lim MH. Acc Chem Res; 2021 Oct 19; 54(20):3930-3940. PubMed ID: 34606227 [Abstract] [Full Text] [Related]
12. Copper and heme-mediated Abeta toxicity: redox chemistry, Abeta oxidations and anti-ROS compounds. Chassaing S, Collin F, Dorlet P, Gout J, Hureau C, Faller P. Curr Top Med Chem; 2012 Oct 19; 12(22):2573-95. PubMed ID: 23339309 [Abstract] [Full Text] [Related]
13. Cu and Zn interactions with Aβ peptides: consequence of coordination on aggregation and formation of neurotoxic soluble Aβ oligomers. Rana M, Sharma AK. Metallomics; 2019 Jan 23; 11(1):64-84. PubMed ID: 30234208 [Abstract] [Full Text] [Related]
14. [The role of zinc ions and structural polymorphism of β-amyloid in the Alzheimer's disease initiation]. Kulikova AA, Makarov AA, Kozin SA. Mol Biol (Mosk); 2015 Jan 23; 49(2):249-63. PubMed ID: 26065253 [Abstract] [Full Text] [Related]
15. Methionine does not reduce Cu(II)-beta-amyloid!--rectification of the roles of methionine-35 and reducing agents in metal-centered oxidation chemistry of Cu(II)-beta-amyloid. da Silva GF, Lykourinou V, Angerhofer A, Ming LJ. Biochim Biophys Acta; 2009 Jan 23; 1792(1):49-55. PubMed ID: 19061952 [Abstract] [Full Text] [Related]
16. Resting microglia react to Aβ42 fibrils but do not detect oligomers or oligomer-induced neuronal damage. Ferrera D, Mazzaro N, Canale C, Gasparini L. Neurobiol Aging; 2014 Nov 23; 35(11):2444-2457. PubMed ID: 24973120 [Abstract] [Full Text] [Related]
17. Complicated function of dopamine in Aβ-related neurotoxicity: Dual interactions with Tyr10 and SNK(26-28) of Aβ. Liu M, Kou L, Bin Y, Wan L, Xiang J. J Inorg Biochem; 2016 Nov 23; 164():119-128. PubMed ID: 27687332 [Abstract] [Full Text] [Related]
18. Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. A review. Butterfield DA. Free Radic Res; 2002 Dec 23; 36(12):1307-13. PubMed ID: 12607822 [Abstract] [Full Text] [Related]
19. A Unified View of Assessing the Pro-oxidant versus Antioxidant Nature of Amyloid Beta Conformers. Mitra S, Prasad P, Chakraborty S. Chembiochem; 2018 Nov 16; 19(22):2360-2371. PubMed ID: 30151968 [Abstract] [Full Text] [Related]
20. Specific Binding of Cu(II) Ions to Amyloid-Beta Peptides Bound to Aggregation-Inhibiting Molecules or SDS Micelles Creates Complexes that Generate Radical Oxygen Species. Tiiman A, Luo J, Wallin C, Olsson L, Lindgren J, Jarvet J, Per R, Sholts SB, Rahimipour S, Abrahams JP, Karlström AE, Gräslund A, Wärmländer SK. J Alzheimers Dis; 2016 Oct 04; 54(3):971-982. PubMed ID: 27567855 [Abstract] [Full Text] [Related] Page: [Next] [New Search]