These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
335 related items for PubMed ID: 29784354
1. A comparative study of sterically and electro-statically stabilized silver nanoparticles for the determination of muscle relaxant tizanidine: Insights of localized surface plasmon resonance, surface enhanced Raman spectroscopy and electrocatalytic activity. El-Zahry MR. Talanta; 2018 Aug 15; 186():229-237. PubMed ID: 29784354 [Abstract] [Full Text] [Related]
2. Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode. Kaur B, Pandiyan T, Satpati B, Srivastava R. Colloids Surf B Biointerfaces; 2013 Nov 01; 111():97-106. PubMed ID: 23777794 [Abstract] [Full Text] [Related]
3. Sonochemical synthesis of silver nanoparticles anchored reduced graphene oxide nanosheets for selective and sensitive detection of glutathione. Vinoth V, Wu JJ, Asiri AM, Anandan S. Ultrason Sonochem; 2017 Nov 01; 39():363-373. PubMed ID: 28732957 [Abstract] [Full Text] [Related]
4. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS). Guo H, Zhang Z, Xing B, Mukherjee A, Musante C, White JC, He L. Environ Sci Technol; 2015 Apr 07; 49(7):4317-24. PubMed ID: 25775209 [Abstract] [Full Text] [Related]
5. Antibacterial effect of various shapes of silver nanoparticles monitored by SERS. El-Zahry MR, Mahmoud A, Refaat IH, Mohamed HA, Bohlmann H, Lendl B. Talanta; 2015 Jun 01; 138():183-189. PubMed ID: 25863389 [Abstract] [Full Text] [Related]
6. Spectrophotometric determination of L-cysteine by using polyvinylpyrrolidone-stabilized silver nanoparticles in the presence of barium ions. Bamdad F, Khorram F, Samet M, Bamdad K, Sangi MR, Allahbakhshi F. Spectrochim Acta A Mol Biomol Spectrosc; 2016 May 15; 161():52-7. PubMed ID: 26950501 [Abstract] [Full Text] [Related]
7. A surface plasmon resonance sensing method for determining captopril based on in situ formation of silver nanoparticles using ascorbic acid. Rastegarzadeh S, Hashemi F. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar 25; 122():536-41. PubMed ID: 24334017 [Abstract] [Full Text] [Related]
8. Fabrication of surface-enhanced Raman spectroscopy substrates using silver nanoparticles produced by laser ablation in liquids. Ondieki AM, Birech Z, Kaduki KA, Mwangi PW, Mwenze NM, Juma M, Jeptoo C, Dlamini MS, Maaza M. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Aug 05; 296():122694. PubMed ID: 37030254 [Abstract] [Full Text] [Related]
9. Poly(ethylene glycol)-stabilized silver nanoparticles for bioanalytical applications of SERS spectroscopy. Shkilnyy A, Soucé M, Dubois P, Warmont F, Saboungi ML, Chourpa I. Analyst; 2009 Sep 05; 134(9):1868-72. PubMed ID: 19684912 [Abstract] [Full Text] [Related]
10. Ionic-liquid-based microextraction method for the determination of silver nanoparticles in consumer products. Soriano ML, Ruiz-Palomero C, Valcárcel M. Anal Bioanal Chem; 2019 Aug 05; 411(20):5023-5031. PubMed ID: 31177332 [Abstract] [Full Text] [Related]
11. ECO-FRIENDLY hybrid hydrogels for detection of phenolic RESIDUES in water using SERS. Dutra MAL, Marques NDN, Fernandes RDS, de Souza Filho MSM, Balaban RC. Ecotoxicol Environ Saf; 2020 Sep 01; 200():110771. PubMed ID: 32464443 [Abstract] [Full Text] [Related]
12. Utility of surface enhanced Raman spectroscopy (SERS) for elucidation and simultaneous determination of some penicillins and penicilloic acid using hydroxylamine silver nanoparticles. El-Zahry MR, Refaat IH, Mohamed HA, Rosenberg E, Lendl B. Talanta; 2015 Nov 01; 144():710-6. PubMed ID: 26452881 [Abstract] [Full Text] [Related]
16. Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples. Guo H, Xing B, Hamlet LC, Chica A, He L. Sci Total Environ; 2016 Jun 01; 554-555():246-52. PubMed ID: 26956173 [Abstract] [Full Text] [Related]
17. A facile and green method for synthesis of reduced graphene oxide/Ag hybrids as efficient surface enhanced Raman scattering platforms. Huang Q, Wang J, Wei W, Yan Q, Wu C, Zhu X. J Hazard Mater; 2015 Jun 01; 283():123-30. PubMed ID: 25262484 [Abstract] [Full Text] [Related]
18. Photocatalytic, antimicrobial activities of biogenic silver nanoparticles and electrochemical degradation of water soluble dyes at glassy carbon/silver modified past electrode using buffer solution. Khan ZU, Khan A, Shah A, Chen Y, Wan P, Khan AU, Tahir K, Muhamma N, Khan FU, Shah HU. J Photochem Photobiol B; 2016 Mar 01; 156():100-7. PubMed ID: 26874611 [Abstract] [Full Text] [Related]
19. A localized surface plasmon resonance light scattering-based sensing of hydroquinone via the formed silver nanoparticles in system. Wang H, Chen D, Wei Y, Yu L, Zhang P, Zhao J. Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep 01; 79(5):2012-6. PubMed ID: 21592852 [Abstract] [Full Text] [Related]
20. Key factors controlling the transport of silver nanoparticles in porous media. El Badawy AM, Hassan AA, Scheckel KG, Suidan MT, Tolaymat TM. Environ Sci Technol; 2013 May 07; 47(9):4039-45. PubMed ID: 23521179 [Abstract] [Full Text] [Related] Page: [Next] [New Search]