These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 29787602

  • 1. Endocrine disrupting potency of organic pollutant mixtures isolated from commercial fish oil evaluated in yeast-based bioassays.
    Roszko MŁ, Kamińska M, Szymczyk K, Piasecka-Jóźwiak K, Chabłowska B.
    PLoS One; 2018; 13(5):e0197907. PubMed ID: 29787602
    [Abstract] [Full Text] [Related]

  • 2. Endocrine disruption of water and sediment extracts in a non-radioactive dot blot/RNAse protection-assay using isolated hepatocytes of rainbow trout.
    Hollert H, Dürr M, Holtey-Weber R, Islinger M, Brack W, Färber H, Erdinger L, Braunbeck T.
    Environ Sci Pollut Res Int; 2005 Nov; 12(6):347-60. PubMed ID: 16305141
    [Abstract] [Full Text] [Related]

  • 3. Toxicity, dioxin-like activities, and endocrine effects of DDT metabolites--DDA, DDMU, DDMS, and DDCN.
    Wetterauer B, Ricking M, Otte JC, Hallare AV, Rastall A, Erdinger L, Schwarzbauer J, Braunbeck T, Hollert H.
    Environ Sci Pollut Res Int; 2012 Feb; 19(2):403-15. PubMed ID: 21792584
    [Abstract] [Full Text] [Related]

  • 4. Endocrine disrupting activities in sewage effluent and river water determined by chemical analysis and in vitro assay in the context of granular activated carbon upgrade.
    Grover DP, Balaam J, Pacitto S, Readman JW, White S, Zhou JL.
    Chemosphere; 2011 Sep; 84(10):1512-20. PubMed ID: 21546050
    [Abstract] [Full Text] [Related]

  • 5. Detection of endocrine active substances in the aquatic environment in southern Taiwan using bioassays and LC-MS/MS.
    Chen KY, Chou PH.
    Chemosphere; 2016 Jun; 152():214-20. PubMed ID: 26971174
    [Abstract] [Full Text] [Related]

  • 6. In vitro assessment of endocrine disrupting potential of naphthenic Acid fractions derived from oil sands-influenced water.
    Leclair LA, Pohler L, Wiseman SB, He Y, Arens CJ, Giesy JP, Scully S, Wagner BD, van den Heuvel MR, Hogan NS.
    Environ Sci Technol; 2015 May 05; 49(9):5743-52. PubMed ID: 25835061
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Exploring potential contributors to endocrine disrupting activities in Taiwan's surface waters using yeast assays and chemical analysis.
    Chou PH, Lin YL, Liu TC, Chen KY.
    Chemosphere; 2015 Nov 05; 138():814-20. PubMed ID: 26295540
    [Abstract] [Full Text] [Related]

  • 11. Bioassay of estrogenicity and chemical analyses of estrogens in streams across the United States associated with livestock operations.
    Alvarez DA, Shappell NW, Billey LO, Bermudez DS, Wilson VS, Kolpin DW, Perkins SD, Evans N, Foreman WT, Gray JL, Shipitalo MJ, Meyer MT.
    Water Res; 2013 Jun 15; 47(10):3347-63. PubMed ID: 23623470
    [Abstract] [Full Text] [Related]

  • 12. Combination of in vitro bioassays encompassing different mechanisms to determine the endocrine-disrupting effects of river water.
    Oh SM, Park K, Chung KH.
    Sci Total Environ; 2006 Feb 01; 354(2-3):252-64. PubMed ID: 16398999
    [Abstract] [Full Text] [Related]

  • 13. Zebrafish-based reporter gene assays reveal different estrogenic activities in river waters compared to a conventional human-derived assay.
    Sonavane M, Creusot N, Maillot-Maréchal E, Péry A, Brion F, Aїt-Aïssa S.
    Sci Total Environ; 2016 Apr 15; 550():934-939. PubMed ID: 26851879
    [Abstract] [Full Text] [Related]

  • 14. Screening of multiple hormonal activities in surface water and sediment from the Pearl River system, South China, using effect-directed in vitro bioassays.
    Zhao JL, Ying GG, Yang B, Liu S, Zhou LJ, Chen ZF, Lai HJ.
    Environ Toxicol Chem; 2011 Oct 15; 30(10):2208-15. PubMed ID: 21766324
    [Abstract] [Full Text] [Related]

  • 15. Effects of antiandrogenic progestins, chlormadinone and cyproterone acetate, and the estrogen 17α-ethinylestradiol (EE2), and their mixtures: Transactivation with human and rainbowfish hormone receptors and transcriptional effects in zebrafish (Danio rerio) eleuthero-embryos.
    Siegenthaler PF, Bain P, Riva F, Fent K.
    Aquat Toxicol; 2017 Jan 15; 182():142-162. PubMed ID: 27907851
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Removal of typical endocrine disrupting chemicals by membrane bioreactor: in comparison with sequencing batch reactor.
    Zhou Y, Huang X, Zhou H, Chen J, Xue W.
    Water Sci Technol; 2011 Jan 15; 64(10):2096-102. PubMed ID: 22105134
    [Abstract] [Full Text] [Related]

  • 18. Profile and removal of endocrine disrupting chemicals by using an ER/AR competitive ligand binding assay and chemical analyses.
    Liu ZH, Ito M, Kanjo Y, Yamamoto A.
    J Environ Sci (China); 2009 Jan 15; 21(7):900-6. PubMed ID: 19862954
    [Abstract] [Full Text] [Related]

  • 19. The use of in vitro bioassays to quantify endocrine disrupting chemicals in municipal wastewater treatment plant effluents.
    Nelson J, Bishay F, van Roodselaar A, Ikonomou M, Law FC.
    Sci Total Environ; 2007 Mar 01; 374(1):80-90. PubMed ID: 17257656
    [Abstract] [Full Text] [Related]

  • 20. Integrated assessment of runoff from livestock farming operations: Analytical chemistry, in vitro bioassays, and in vivo fish exposures.
    Cavallin JE, Durhan EJ, Evans N, Jensen KM, Kahl MD, Kolpin DW, Kolodziej EP, Foreman WT, LaLone CA, Makynen EA, Seidl SM, Thomas LM, Villeneuve DL, Weberg MA, Wilson VS, Ankley GT.
    Environ Toxicol Chem; 2014 Aug 01; 33(8):1849-57. PubMed ID: 24831736
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.