These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


443 related items for PubMed ID: 29789347

  • 1. Scaling of avian bipedal locomotion reveals independent effects of body mass and leg posture on gait.
    Daley MA, Birn-Jeffery A.
    J Exp Biol; 2018 May 22; 221(Pt 10):. PubMed ID: 29789347
    [Abstract] [Full Text] [Related]

  • 2. Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain.
    Birn-Jeffery AV, Hubicki CM, Blum Y, Renjewski D, Hurst JW, Daley MA.
    J Exp Biol; 2014 Nov 01; 217(Pt 21):3786-96. PubMed ID: 25355848
    [Abstract] [Full Text] [Related]

  • 3. Children and adults minimise activated muscle volume by selecting gait parameters that balance gross mechanical power and work demands.
    Hubel TY, Usherwood JR.
    J Exp Biol; 2015 Sep 01; 218(Pt 18):2830-9. PubMed ID: 26400978
    [Abstract] [Full Text] [Related]

  • 4. Understanding the Agility of Running Birds: Sensorimotor and Mechanical Factors in Avian Bipedal Locomotion.
    Daley MA.
    Integr Comp Biol; 2018 Nov 01; 58(5):884-893. PubMed ID: 29897448
    [Abstract] [Full Text] [Related]

  • 5. Terrestrial locomotion in the black-billed magpie: kinematic analysis of walking, running and out-of-phase hopping.
    Verstappen M, Aerts P, Van Damme R.
    J Exp Biol; 2000 Jul 01; 203(Pt 14):2159-70. PubMed ID: 10862728
    [Abstract] [Full Text] [Related]

  • 6. Muscle-controlled physics simulations of bird locomotion resolve the grounded running paradox.
    van Bijlert PA, van Soest AJ, Schulp AS, Bates KT.
    Sci Adv; 2024 Sep 27; 10(39):eado0936. PubMed ID: 39321289
    [Abstract] [Full Text] [Related]

  • 7. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA.
    J Exp Zool A Comp Exp Biol; 2006 Nov 01; 305(11):899-911. PubMed ID: 17029267
    [Abstract] [Full Text] [Related]

  • 8. Locomotor versatility in the white-handed gibbon (Hylobates lar): a spatiotemporal analysis of the bipedal, tripedal, and quadrupedal gaits.
    Vereecke EE, D'Août K, Aerts P.
    J Hum Evol; 2006 May 01; 50(5):552-67. PubMed ID: 16516949
    [Abstract] [Full Text] [Related]

  • 9. Scaling of the spring in the leg during bouncing gaits of mammals.
    Lee DV, Isaacs MR, Higgins TE, Biewener AA, McGowan CP.
    Integr Comp Biol; 2014 Dec 01; 54(6):1099-108. PubMed ID: 25305189
    [Abstract] [Full Text] [Related]

  • 10. Differential sex-specific walking kinematics in leghorn chickens (Gallus gallus domesticus) selectively bred for different body size.
    Rose KA, Codd JR, Nudds RL.
    J Exp Biol; 2016 Aug 15; 219(Pt 16):2525-33. PubMed ID: 27296046
    [Abstract] [Full Text] [Related]

  • 11. Compliant leg behaviour explains basic dynamics of walking and running.
    Geyer H, Seyfarth A, Blickhan R.
    Proc Biol Sci; 2006 Nov 22; 273(1603):2861-7. PubMed ID: 17015312
    [Abstract] [Full Text] [Related]

  • 12. Gait-specific energetics contributes to economical walking and running in emus and ostriches.
    Watson RR, Rubenson J, Coder L, Hoyt DF, Propert MW, Marsh RL.
    Proc Biol Sci; 2011 Jul 07; 278(1714):2040-6. PubMed ID: 21123267
    [Abstract] [Full Text] [Related]

  • 13. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs.
    Allen V, Bates KT, Li Z, Hutchinson JR.
    Nature; 2013 May 02; 497(7447):104-7. PubMed ID: 23615616
    [Abstract] [Full Text] [Related]

  • 14. Bipedal animals, and their differences from humans.
    Alexander RM.
    J Anat; 2004 May 02; 204(5):321-30. PubMed ID: 15198697
    [Abstract] [Full Text] [Related]

  • 15. Spatio-temporal gait characteristics of the hind-limb cycles during voluntary bipedal and quadrupedal walking in bonobos (Pan paniscus).
    Aerts P, Van Damme R, Van Elsacker L, Duchêne V.
    Am J Phys Anthropol; 2000 Apr 02; 111(4):503-17. PubMed ID: 10727969
    [Abstract] [Full Text] [Related]

  • 16. Bipedal gait versatility in the Japanese macaque (Macaca fuscata).
    Ogihara N, Hirasaki E, Andrada E, Blickhan R.
    J Hum Evol; 2018 Dec 02; 125():2-14. PubMed ID: 30502894
    [Abstract] [Full Text] [Related]

  • 17. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: I. Organismal metabolism and biomechanics.
    Marsh RL, Ellerby DJ, Henry HT, Rubenson J.
    J Exp Biol; 2006 Jun 02; 209(Pt 11):2050-63. PubMed ID: 16709908
    [Abstract] [Full Text] [Related]

  • 18. Increasing trunk flexion transforms human leg function into that of birds despite different leg morphology.
    Aminiaghdam S, Rode C, Müller R, Blickhan R.
    J Exp Biol; 2017 Feb 01; 220(Pt 3):478-486. PubMed ID: 27888201
    [Abstract] [Full Text] [Related]

  • 19. Adjustments of global and local hindlimb properties during terrestrial locomotion of the common quail (Coturnix coturnix).
    Andrada E, Nyakatura JA, Bergmann F, Blickhan R.
    J Exp Biol; 2013 Oct 15; 216(Pt 20):3906-16. PubMed ID: 23868846
    [Abstract] [Full Text] [Related]

  • 20. Contributions to the understanding of gait control.
    Simonsen EB.
    Dan Med J; 2014 Apr 15; 61(4):B4823. PubMed ID: 24814597
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.