These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
186 related items for PubMed ID: 29796970
1. Stabilizing displayed proteins on vegetative Bacillus subtilis cells. Huang GL, Gosschalk JE, Kim YS, Ogorzalek Loo RR, Clubb RT. Appl Microbiol Biotechnol; 2018 Aug; 102(15):6547-6565. PubMed ID: 29796970 [Abstract] [Full Text] [Related]
2. Assembly of minicellulosomes on the surface of Bacillus subtilis. Anderson TD, Robson SA, Jiang XW, Malmirchegini GR, Fierobe HP, Lazazzera BA, Clubb RT. Appl Environ Microbiol; 2011 Jul; 77(14):4849-58. PubMed ID: 21622797 [Abstract] [Full Text] [Related]
3. Development and characterization of membrane surface display system using molecular chaperon, prsA, of Bacillus subtilis. Kim JH, Park IS, Kim BG. Biochem Biophys Res Commun; 2005 Sep 09; 334(4):1248-53. PubMed ID: 16051192 [Abstract] [Full Text] [Related]
5. Functional characterization and localization of a Bacillus subtilis sortase and its substrate and use of this sortase system to covalently anchor a heterologous protein to the B. subtilis cell wall for surface display. Liew PX, Wang CL, Wong SL. J Bacteriol; 2012 Jan 09; 194(1):161-75. PubMed ID: 22020651 [Abstract] [Full Text] [Related]
6. Spore-displayed enzyme cascade with tunable stoichiometry. Chen L, Mulchandani A, Ge X. Biotechnol Prog; 2017 Mar 09; 33(2):383-389. PubMed ID: 27977916 [Abstract] [Full Text] [Related]
7. Clostridium thermocellum Nitrilase Expression and Surface Display on Bacillus subtilis Spores. Chen H, Zhang T, Sun T, Ni Z, Le Y, Tian R, Chen Z, Zhang C. J Mol Microbiol Biotechnol; 2015 Mar 09; 25(6):381-7. PubMed ID: 26629931 [Abstract] [Full Text] [Related]
8. Expression and display of a novel thermostable esterase from Clostridium thermocellum on the surface of Bacillus subtilis using the CotB anchor protein. Chen H, Zhang T, Jia J, Vastermark A, Tian R, Ni Z, Chen Z, Chen K, Yang S. J Ind Microbiol Biotechnol; 2015 Nov 09; 42(11):1439-48. PubMed ID: 26318029 [Abstract] [Full Text] [Related]
9. Production of XynX, a large multimodular protein of thermoanaerobacterium sp., by protease-deficient Bacillus subtilis strains [corrected]. Phuong ND, Jeong YS, Selvaraj T, Kim SK, Kim YH, Jung KH, Kim J, Yun HD, Wong SL, Lee JK, Kim H. Appl Biochem Biotechnol; 2012 Sep 09; 168(2):375-82. PubMed ID: 22729758 [Abstract] [Full Text] [Related]
10. Heterologous production of active form of beta-lytic protease by Bacillus subtilis and improvement of staphylolytic activity by protein engineering. Hioki T, Yamashita D, Tohata M, Endo K, Kawahara A, Okuda M. Microb Cell Fact; 2021 Dec 28; 20(1):231. PubMed ID: 34963446 [Abstract] [Full Text] [Related]
11. Post-translational secretion stress regulation in Bacillus subtilis is controlled by intra- and extracellular proteases. Öktem A, Pranoto DA, van Dijl JM. N Biotechnol; 2024 Mar 25; 79():71-81. PubMed ID: 38158017 [Abstract] [Full Text] [Related]
12. Utilization of Bacillus subtilis cells displaying a glucose-tolerant β-glucosidase for whole-cell biocatalysis. Gupta R, Noronha SB. Enzyme Microb Technol; 2020 Jan 25; 132():109444. PubMed ID: 31731952 [Abstract] [Full Text] [Related]
13. Use of a triple protease-deficient mutant of Bacillus subtilis as a host for secretion of a B. subtilis cellulase and TEM beta-lactamase. Nakamura A, Toyama N, Kitamura A, Masaki H, Uozumi T. Agric Biol Chem; 1991 Sep 25; 55(9):2367-74. PubMed ID: 1368741 [Abstract] [Full Text] [Related]
14. Cloning and enhancing production of a detergent- and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800. Nguyen TT, Quyen TD, Le HT. Microb Cell Fact; 2013 Sep 10; 12():79. PubMed ID: 24021098 [Abstract] [Full Text] [Related]
15. Secretion of heterologous proteins in Bacillus subtilis can be improved by engineering cell components affecting post-translocational protein folding and degradation. Vitikainen M, Hyyryläinen HL, Kivimäki A, Kontinen VP, Sarvas M. J Appl Microbiol; 2005 Sep 10; 99(2):363-75. PubMed ID: 16033468 [Abstract] [Full Text] [Related]
17. Bacillus subtilis as a platform for molecular characterisation of regulatory mechanisms of Enterococcus faecalis resistance against cell wall antibiotics. Fang C, Stiegeler E, Cook GM, Mascher T, Gebhard S. PLoS One; 2014 Sep 10; 9(3):e93169. PubMed ID: 24676422 [Abstract] [Full Text] [Related]
18. Cloning of thermostable cellulase genes of Clostridium thermocellum and their secretive expression in Bacillus subtilis. Liu JM, Xin XJ, Li CX, Xu JH, Bao J. Appl Biochem Biotechnol; 2012 Feb 10; 166(3):652-62. PubMed ID: 22101447 [Abstract] [Full Text] [Related]
19. Secretion of functional human interleukin-3 from Bacillus subtilis. Westers L, Dijkstra DS, Westers H, van Dijl JM, Quax WJ. J Biotechnol; 2006 May 17; 123(2):211-24. PubMed ID: 16359746 [Abstract] [Full Text] [Related]
20. Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP. Griffith KL, Grossman AD. Mol Microbiol; 2008 Nov 17; 70(4):1012-25. PubMed ID: 18811726 [Abstract] [Full Text] [Related] Page: [Next] [New Search]