These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
221 related items for PubMed ID: 29797591
1. Chromatographic behavior of new deazapurine ribonucleosides in hydrophilic interaction liquid chromatography. Kalíková K, Voborná M, Tesařová E. Electrophoresis; 2018 Aug; 39(16):2144-2151. PubMed ID: 29797591 [Abstract] [Full Text] [Related]
2. Effect of silica gel modification with cyclofructans on properties of hydrophilic interaction liquid chromatography stationary phases. Kozlík P, Símová V, Kalíková K, Bosáková Z, Armstrong DW, Tesařová E. J Chromatogr A; 2012 Sep 28; 1257():58-65. PubMed ID: 22921504 [Abstract] [Full Text] [Related]
3. Development and evaluation of new zwitterionic hydrophilic interaction liquid chromatography stationary phases based on 3-P,P-diphenylphosphonium-propylsulfonate. Qiu H, Wanigasekara E, Zhang Y, Tran T, Armstrong DW. J Chromatogr A; 2011 Nov 04; 1218(44):8075-82. PubMed ID: 21963182 [Abstract] [Full Text] [Related]
4. Cyclofructan 6 based stationary phases for hydrophilic interaction liquid chromatography. Qiu H, Loukotková L, Sun P, Tesařová E, Bosáková Z, Armstrong DW. J Chromatogr A; 2011 Jan 14; 1218(2):270-9. PubMed ID: 21167492 [Abstract] [Full Text] [Related]
6. Study of surface-bonded dicationic ionic liquids as stationary phases for hydrophilic interaction chromatography. Qiao L, Li H, Shan Y, Wang S, Shi X, Lu X, Xu G. J Chromatogr A; 2014 Feb 21; 1330():40-50. PubMed ID: 24484692 [Abstract] [Full Text] [Related]
7. Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography. Aral H, Çelik KS, Altındağ R, Aral T. Talanta; 2017 Nov 01; 174():703-714. PubMed ID: 28738646 [Abstract] [Full Text] [Related]
8. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications. Aral T, Aral H, Ziyadanoğulları B, Ziyadanoğulları R. Talanta; 2015 Jan 01; 131():64-73. PubMed ID: 25281074 [Abstract] [Full Text] [Related]
9. Study of the retention behavior of small polar molecules on different types of stationary phases used in hydrophilic interaction liquid chromatography. Vlčková H, Ježková K, Stětková K, Tomšíková H, Solich P, Nováková L. J Sep Sci; 2014 Jun 01; 37(11):1297-307. PubMed ID: 24648311 [Abstract] [Full Text] [Related]
10. Study of retention and peak shape in hydrophilic interaction chromatography over a wide pH range. McCalley DV. J Chromatogr A; 2015 Sep 11; 1411():41-9. PubMed ID: 26275863 [Abstract] [Full Text] [Related]
11. Development and evaluation of new imidazolium-based zwitterionic stationary phases for hydrophilic interaction chromatography. Qiao L, Dou A, Shi X, Li H, Shan Y, Lu X, Xu G. J Chromatogr A; 2013 Apr 19; 1286():137-45. PubMed ID: 23489487 [Abstract] [Full Text] [Related]
12. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography. Aydoğan C, El Rassi Z. J Chromatogr A; 2016 May 06; 1445():55-61. PubMed ID: 27059399 [Abstract] [Full Text] [Related]
13. The effect of charged groups on hydrophilic monolithic stationary phases on their chromatographic properties. Li H, Liu C, Wang Q, Zhou H, Jiang Z. J Chromatogr A; 2016 Oct 21; 1469():77-87. PubMed ID: 27692647 [Abstract] [Full Text] [Related]
14. Separation of nucleotides by hydrophilic interaction chromatography using the FRULIC-N column. Padivitage NL, Dissanayake MK, Armstrong DW. Anal Bioanal Chem; 2013 Nov 21; 405(27):8837-48. PubMed ID: 23995506 [Abstract] [Full Text] [Related]
15. [Separations of four groups of analogues on cyclofructan based columns]. Shu Y, Gao M, Yi D. Se Pu; 2015 Apr 21; 33(4):428-33. PubMed ID: 26292416 [Abstract] [Full Text] [Related]
16. Comparison of peak shape in hydrophilic interaction chromatography using acidic salt buffers and simple acid solutions. Heaton JC, Russell JJ, Underwood T, Boughtflower R, McCalley DV. J Chromatogr A; 2014 Jun 20; 1347():39-48. PubMed ID: 24813934 [Abstract] [Full Text] [Related]
17. A novel surface-confined glucaminium-based ionic liquid stationary phase for hydrophilic interaction/anion-exchange mixed-mode chromatography. Qiao L, Wang S, Li H, Shan Y, Dou A, Shi X, Xu G. J Chromatogr A; 2014 Sep 19; 1360():240-7. PubMed ID: 25129388 [Abstract] [Full Text] [Related]
18. Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography. McCalley DV. J Chromatogr A; 2017 Feb 03; 1483():71-79. PubMed ID: 28069167 [Abstract] [Full Text] [Related]
19. Preparation of a novel carboxyl stationary phase by "thiol-ene" click chemistry for hydrophilic interaction chromatography. Peng XT, Liu T, Ji SX, Feng YQ. J Sep Sci; 2013 Aug 03; 36(16):2571-7. PubMed ID: 23749722 [Abstract] [Full Text] [Related]
20. Mixed-mode liquid chromatography with a stationary phase co-functionalized with ionic liquid embedded C18 and an aryl sulfonate group. Ren X, Zhang K, Gao D, Fu Q, Zeng J, Zhou D, Wang L, Xia Z. J Chromatogr A; 2018 Aug 24; 1564():137-144. PubMed ID: 29891400 [Abstract] [Full Text] [Related] Page: [Next] [New Search]