These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
214 related items for PubMed ID: 29847644
1. Expression Profiling Analysis Reveals Key MicroRNA-mRNA Interactions in Early Retinal Degeneration in Retinitis Pigmentosa. Anasagasti A, Ezquerra-Inchausti M, Barandika O, Muñoz-Culla M, Caffarel MM, Otaegui D, López de Munain A, Ruiz-Ederra J. Invest Ophthalmol Vis Sci; 2018 May 01; 59(6):2381-2392. PubMed ID: 29847644 [Abstract] [Full Text] [Related]
2. Long-term expression of glial cell line-derived neurotrophic factor slows, but does not stop retinal degeneration in a model of retinitis pigmentosa. Ohnaka M, Miki K, Gong YY, Stevens R, Iwase T, Hackett SF, Campochiaro PA. J Neurochem; 2012 Sep 01; 122(5):1047-53. PubMed ID: 22726126 [Abstract] [Full Text] [Related]
4. Knockout of ccr2 alleviates photoreceptor cell death in a model of retinitis pigmentosa. Guo C, Otani A, Oishi A, Kojima H, Makiyama Y, Nakagawa S, Yoshimura N. Exp Eye Res; 2012 Nov 01; 104():39-47. PubMed ID: 23022404 [Abstract] [Full Text] [Related]
5. A profile of transcriptomic changes in the rd10 mouse model of retinitis pigmentosa. Uren PJ, Lee JT, Doroudchi MM, Smith AD, Horsager A. Mol Vis; 2014 Nov 01; 20():1612-28. PubMed ID: 25489233 [Abstract] [Full Text] [Related]
6. Gene expression changes within Müller glial cells in retinitis pigmentosa. Roesch K, Stadler MB, Cepko CL. Mol Vis; 2012 Nov 01; 18():1197-214. PubMed ID: 22665967 [Abstract] [Full Text] [Related]
7. Laboratory evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Yoshida N, Ikeda Y, Notomi S, Ishikawa K, Murakami Y, Hisatomi T, Enaida H, Ishibashi T. Ophthalmology; 2013 Jan 01; 120(1):e5-12. PubMed ID: 22986110 [Abstract] [Full Text] [Related]
8. Long-term preservation of cone photoreceptors and visual acuity in rd10 mutant mice exposed to continuous environmental enrichment. Barone I, Novelli E, Strettoi E. Mol Vis; 2014 Jan 01; 20():1545-56. PubMed ID: 25489227 [Abstract] [Full Text] [Related]
9. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. Gargini C, Terzibasi E, Mazzoni F, Strettoi E. J Comp Neurol; 2007 Jan 10; 500(2):222-38. PubMed ID: 17111372 [Abstract] [Full Text] [Related]
10. Role of the sigma-1 receptor chaperone in rod and cone photoreceptor degenerations in a mouse model of retinitis pigmentosa. Yang H, Fu Y, Liu X, Shahi PK, Mavlyutov TA, Li J, Yao A, Guo SZ, Pattnaik BR, Guo LW. Mol Neurodegener; 2017 Sep 19; 12(1):68. PubMed ID: 28927431 [Abstract] [Full Text] [Related]
11. Sirt1 involvement in rd10 mouse retinal degeneration. Jaliffa C, Ameqrane I, Dansault A, Leemput J, Vieira V, Lacassagne E, Provost A, Bigot K, Masson C, Menasche M, Abitbol M. Invest Ophthalmol Vis Sci; 2009 Aug 19; 50(8):3562-72. PubMed ID: 19407027 [Abstract] [Full Text] [Related]
12. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mitton KP, Guzman AE, Deshpande M, Byrd D, DeLooff C, Mkoyan K, Zlojutro P, Wallace A, Metcalf B, Laux K, Sotzen J, Tran T. Mol Vis; 2014 Aug 19; 20():1527-44. PubMed ID: 25489226 [Abstract] [Full Text] [Related]
13. The synthetic progestin norgestrel acts to increase LIF levels in the rd10 mouse model of retinitis pigmentosa. Byrne AM, Roche SL, Ruiz-Lopez AM, Jackson AC, Cotter TG. Mol Vis; 2016 Aug 19; 22():264-74. PubMed ID: 27081297 [Abstract] [Full Text] [Related]
14. Loss of HCN1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia. Schön C, Asteriti S, Koch S, Sothilingam V, Garcia Garrido M, Tanimoto N, Herms J, Seeliger MW, Cangiano L, Biel M, Michalakis S. Hum Mol Genet; 2016 Mar 15; 25(6):1165-75. PubMed ID: 26740549 [Abstract] [Full Text] [Related]
15. A diffusible factor from normal retinal cells promotes rod photoreceptor survival in an in vitro model of retinitis pigmentosa. Streichert LC, Birnbach CD, Reh TA. J Neurobiol; 1999 Jun 15; 39(4):475-90. PubMed ID: 10380070 [Abstract] [Full Text] [Related]
16. MicroRNA Expression Patterns Involved in Amyloid Beta-Induced Retinal Degeneration. Huang P, Sun J, Wang F, Luo X, Feng J, Gu Q, Liu T, Sun X. Invest Ophthalmol Vis Sci; 2017 Mar 01; 58(3):1726-1735. PubMed ID: 28324113 [Abstract] [Full Text] [Related]
17. A common microRNA signature in mouse models of retinal degeneration. Loscher CJ, Hokamp K, Wilson JH, Li T, Humphries P, Farrar GJ, Palfi A. Exp Eye Res; 2008 Dec 01; 87(6):529-34. PubMed ID: 18834879 [Abstract] [Full Text] [Related]
18. HIF-1α stabilization reduces retinal degeneration in a mouse model of retinitis pigmentosa. Olivares-González L, Martínez-Fernández de la Cámara C, Hervás D, Millán JM, Rodrigo R. FASEB J; 2018 May 01; 32(5):2438-2451. PubMed ID: 29295858 [Abstract] [Full Text] [Related]
19. Photoreceptor protection via blockade of BET epigenetic readers in a murine model of inherited retinal degeneration. Zhao L, Li J, Fu Y, Zhang M, Wang B, Ouellette J, Shahi PK, Pattnaik BR, Watters JJ, Wong WT, Guo LW. J Neuroinflammation; 2017 Jan 19; 14(1):14. PubMed ID: 28103888 [Abstract] [Full Text] [Related]
20. Retinal miRNA Functions in Health and Disease. Zuzic M, Rojo Arias JE, Wohl SG, Busskamp V. Genes (Basel); 2019 May 17; 10(5):. PubMed ID: 31108959 [Abstract] [Full Text] [Related] Page: [Next] [New Search]