These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


186 related items for PubMed ID: 29853107

  • 1. High surface graphene nanoflakes as sensitive sensing platform for simultaneous electrochemical detection of metronidazole and chloramphenicol.
    Meenakshi S, Jancy Sophia S, Pandian K.
    Mater Sci Eng C Mater Biol Appl; 2018 Sep 01; 90():407-419. PubMed ID: 29853107
    [Abstract] [Full Text] [Related]

  • 2. A highly selective electrochemical sensor for chloramphenicol based on three-dimensional reduced graphene oxide architectures.
    Zhang X, Zhang YC, Zhang JW.
    Talanta; 2016 Dec 01; 161():567-573. PubMed ID: 27769449
    [Abstract] [Full Text] [Related]

  • 3. The development of an electrochemical nanoaptasensor to sensing chloramphenicol using a nanocomposite consisting of graphene oxide functionalized with (3-Aminopropyl) triethoxysilane and silver nanoparticles.
    Roushani M, Rahmati Z, Farokhi S, Hoseini SJ, Fath RH.
    Mater Sci Eng C Mater Biol Appl; 2020 Mar 01; 108():110388. PubMed ID: 31923985
    [Abstract] [Full Text] [Related]

  • 4. Electrochemically reduced graphene oxide-based electrochemical sensor for the sensitive determination of ferulic acid in A. sinensis and biological samples.
    Liu L, Gou Y, Gao X, Zhang P, Chen W, Feng S, Hu F, Li Y.
    Mater Sci Eng C Mater Biol Appl; 2014 Sep 01; 42():227-33. PubMed ID: 25063114
    [Abstract] [Full Text] [Related]

  • 5. CuCo2O4/N-Doped CNTs loaded with molecularly imprinted polymer for electrochemical sensor: Preparation, characterization and detection of metronidazole.
    Wang Y, Yao L, Liu X, Cheng J, Liu W, Liu T, Sun M, Zhao L, Ding F, Lu Z, Zou P, Wang X, Zhao Q, Rao H.
    Biosens Bioelectron; 2019 Oct 01; 142():111483. PubMed ID: 31279173
    [Abstract] [Full Text] [Related]

  • 6. Synthesis, characterization and catalytic performance of nanostructured dysprosium molybdate catalyst for selective biomolecule detection in biological and pharmaceutical samples.
    Karthik R, Mutharani B, Chen SM, Vinoth Kumar J, Abinaya M, Chen TW, Lei W, Hao Q.
    J Mater Chem B; 2019 Aug 21; 7(33):5065-5077. PubMed ID: 31432868
    [Abstract] [Full Text] [Related]

  • 7. An electrocatalytic oxidation and voltammetric method using a chemically reduced graphene oxide film for the determination of caffeic acid.
    Vilian AT, Chen SM, Chen YH, Ali MA, Al-Hemaid FM.
    J Colloid Interface Sci; 2014 Jun 01; 423():33-40. PubMed ID: 24703665
    [Abstract] [Full Text] [Related]

  • 8. Electrochemical sensor based on molecularly imprinted polymer for sensitive and selective determination of metronidazole via two different approaches.
    Liu J, Tang H, Zhang B, Deng X, Zhao F, Zuo P, Ye BC, Li Y.
    Anal Bioanal Chem; 2016 Jun 01; 408(16):4287-95. PubMed ID: 27100231
    [Abstract] [Full Text] [Related]

  • 9. Fabrication of highly sensitive gold nanourchins based electrochemical sensor for nanomolar determination of primaquine.
    Thapliyal NB, Chiwunze TE, Karpoormath R, Cherukupalli S.
    Mater Sci Eng C Mater Biol Appl; 2017 May 01; 74():27-35. PubMed ID: 28254294
    [Abstract] [Full Text] [Related]

  • 10. Metal-free Sulfur-doped graphitic carbon nitride-modified GCE-based electrocatalyst for the enhanced electrochemical determination of Omeprazole in Drug formulations and Biological Samples.
    Pandian K, Kalayarasi J, Gopinath SCB.
    Biotechnol Appl Biochem; 2022 Dec 01; 69(6):2766-2779. PubMed ID: 35287249
    [Abstract] [Full Text] [Related]

  • 11. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine.
    Jin H, Zhao C, Gui R, Gao X, Wang Z.
    Anal Chim Acta; 2018 Sep 26; 1025():154-162. PubMed ID: 29801604
    [Abstract] [Full Text] [Related]

  • 12. Sonochemical and sustainable synthesis of graphene-gold (G-Au) nanocomposites for enzymeless and selective electrochemical detection of nitric oxide.
    Geetha Bai R, Muthoosamy K, Zhou M, Ashokkumar M, Huang NM, Manickam S.
    Biosens Bioelectron; 2017 Jan 15; 87():622-629. PubMed ID: 27616288
    [Abstract] [Full Text] [Related]

  • 13. A novel composite film derived from cysteic acid and PDDA-functionalized graphene: enhanced sensing material for electrochemical determination of metronidazole.
    Liu W, Zhang J, Li C, Tang L, Zhang Z, Yang M.
    Talanta; 2013 Jan 30; 104():204-11. PubMed ID: 23597911
    [Abstract] [Full Text] [Related]

  • 14. Green synthesis of silver nanoparticles-graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan.
    Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M, Wang D.
    Biosens Bioelectron; 2013 Apr 15; 42():198-206. PubMed ID: 23202352
    [Abstract] [Full Text] [Related]

  • 15. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone.
    Shahrokhian S, Naderi L, Ghalkhani M.
    Mater Sci Eng C Mater Biol Appl; 2016 Apr 01; 61():842-50. PubMed ID: 26838915
    [Abstract] [Full Text] [Related]

  • 16. High-sensitivity paracetamol sensor based on Pd/graphene oxide nanocomposite as an enhanced electrochemical sensing platform.
    Li J, Liu J, Tan G, Jiang J, Peng S, Deng M, Qian D, Feng Y, Liu Y.
    Biosens Bioelectron; 2014 Apr 15; 54():468-75. PubMed ID: 24315879
    [Abstract] [Full Text] [Related]

  • 17. Electrochemical determination of chloramphenicol and metronidazole by using a glassy carbon electrode modified with iron, nitrogen co-doped nanoporous carbon derived from a metal-organic framework (type Fe/ZIF-8).
    Baikeli Y, Mamat X, He F, Xin X, Li Y, Aisa HA, Hu G.
    Ecotoxicol Environ Saf; 2020 Nov 15; 204():111066. PubMed ID: 32781344
    [Abstract] [Full Text] [Related]

  • 18. Sunlight assisted synthesis of silver nanoparticles in zeolite matrix and study of its application on electrochemical detection of dopamine and uric acid in urine samples.
    Meenakshi S, Devi S, Pandian K, Devendiran R, Selvaraj M.
    Mater Sci Eng C Mater Biol Appl; 2016 Dec 01; 69():85-94. PubMed ID: 27612692
    [Abstract] [Full Text] [Related]

  • 19. Enhancement of electrogenerated chemiluminescence of luminol by ascorbic acid at gold nanoparticle/graphene modified glassy carbon electrode.
    Dong Y, Gao T, Zhou Y, Chu X, Wang C.
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan 05; 134():225-32. PubMed ID: 25022493
    [Abstract] [Full Text] [Related]

  • 20. Improved conductivity of flower-like MnWO4 on defect engineered graphitic carbon nitride as an efficient electrocatalyst for ultrasensitive sensing of chloramphenicol.
    Vilian ATE, Oh SY, Rethinasabapathy M, Umapathi R, Hwang SK, Oh CW, Park B, Huh YS, Han YK.
    J Hazard Mater; 2020 Nov 15; 399():122868. PubMed ID: 32531674
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.