These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
238 related items for PubMed ID: 29853656
1. Genotyping by Sequencing of 393 Sorghum bicolor BTx623 × IS3620C Recombinant Inbred Lines Improves Sensitivity and Resolution of QTL Detection. Kong W, Kim C, Zhang D, Guo H, Tan X, Jin H, Zhou C, Shuang LS, Goff V, Sezen U, Pierce G, Compton R, Lemke C, Robertson J, Rainville L, Auckland S, Paterson AH. G3 (Bethesda); 2018 Jul 31; 8(8):2563-2572. PubMed ID: 29853656 [Abstract] [Full Text] [Related]
2. Increased Power To Dissect Adaptive Traits in Global Sorghum Diversity Using a Nested Association Mapping Population. Bouchet S, Olatoye MO, Marla SR, Perumal R, Tesso T, Yu J, Tuinstra M, Morris GP. Genetics; 2017 Jun 31; 206(2):573-585. PubMed ID: 28592497 [Abstract] [Full Text] [Related]
3. Digital genotyping of sorghum - a diverse plant species with a large repeat-rich genome. Morishige DT, Klein PE, Hilley JL, Sahraeian SM, Sharma A, Mullet JE. BMC Genomics; 2013 Jul 05; 14():448. PubMed ID: 23829350 [Abstract] [Full Text] [Related]
4. Mating Design and Genetic Structure of a Multi-Parent Advanced Generation Intercross (MAGIC) Population of Sorghum (Sorghum bicolor (L.) Moench). Ongom PO, Ejeta G. G3 (Bethesda); 2018 Jan 04; 8(1):331-341. PubMed ID: 29150594 [Abstract] [Full Text] [Related]
5. Genetic analysis of recombinant inbred lines for Sorghum bicolor × Sorghum propinquum. Kong W, Jin H, Franks CD, Kim C, Bandopadhyay R, Rana MK, Auckland SA, Goff VH, Rainville LK, Burow GB, Woodfin C, Burke JJ, Paterson AH. G3 (Bethesda); 2013 Jan 04; 3(1):101-8. PubMed ID: 23316442 [Abstract] [Full Text] [Related]
6. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Shiringani AL, Frisch M, Friedt W. Theor Appl Genet; 2010 Jul 04; 121(2):323-36. PubMed ID: 20229249 [Abstract] [Full Text] [Related]
7. Multiparental mapping of plant height and flowering time QTL in partially isogenic sorghum families. Higgins RH, Thurber CS, Assaranurak I, Brown PJ. G3 (Bethesda); 2014 Sep 18; 4(9):1593-602. PubMed ID: 25237111 [Abstract] [Full Text] [Related]
8. QTL mapping for bioenergy traits in sweet sorghum recombinant inbred lines. Souza VF, Pereira GDS, Pastina MM, Parrella RADC, Simeone MLF, Barros BA, Noda RW, da Costa E Silva L, Magalhães JV, Schaffert RE, Garcia AAF, Damasceno CMB. G3 (Bethesda); 2021 Oct 19; 11(11):. PubMed ID: 34519766 [Abstract] [Full Text] [Related]
9. RAD-seq-Based High-Density Linkage Map Construction and QTL Mapping of Biomass-Related Traits in Sorghum using the Japanese Landrace Takakibi NOG. Kajiya-Kanegae H, Takanashi H, Fujimoto M, Ishimori M, Ohnishi N, Wacera W F, Omollo EA, Kobayashi M, Yano K, Nakano M, Kozuka T, Kusaba M, Iwata H, Tsutsumi N, Sakamoto W. Plant Cell Physiol; 2020 Jul 01; 61(7):1262-1272. PubMed ID: 32353144 [Abstract] [Full Text] [Related]
10. Genetic Architecture of domestication- and improvement-related traits using a population derived from Sorghum virgatum and Sorghum bicolor. Liu H, Liu H, Zhou L, Lin Z. Plant Sci; 2019 Jun 01; 283():135-146. PubMed ID: 31128683 [Abstract] [Full Text] [Related]
11. Quantitative trait mapping of plant architecture in two BC1F2 populations of Sorghum Bicolor × S. halepense and comparisons to two other sorghum populations. Kong W, Nabukalu P, Cox TS, Goff VH, Robertson JS, Pierce GJ, Lemke C, Compton R, Paterson AH. Theor Appl Genet; 2021 Apr 01; 134(4):1185-1200. PubMed ID: 33423085 [Abstract] [Full Text] [Related]
12. Validation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghum. Gelli M, Konda AR, Liu K, Zhang C, Clemente TE, Holding DR, Dweikat IM. BMC Plant Biol; 2017 Jul 11; 17(1):123. PubMed ID: 28697783 [Abstract] [Full Text] [Related]
14. Genetic Analysis of Stem Diameter and Water Contents To Improve Sorghum Bioenergy Efficiency. Kong W, Jin H, Goff VH, Auckland SA, Rainville LK, Paterson AH. G3 (Bethesda); 2020 Nov 05; 10(11):3991-4000. PubMed ID: 32907818 [Abstract] [Full Text] [Related]
15. Genetic analysis of rhizomatousness and its relationship with vegetative branching of recombinant inbred lines of Sorghum bicolor × S. propinquum. Kong W, Kim C, Goff VH, Zhang D, Paterson AH. Am J Bot; 2015 May 05; 102(5):718-24. PubMed ID: 26022486 [Abstract] [Full Text] [Related]
17. Supermodels: sorghum and maize provide mutual insight into the genetics of flowering time. Mace ES, Hunt CH, Jordan DR. Theor Appl Genet; 2013 May 05; 126(5):1377-95. PubMed ID: 23459955 [Abstract] [Full Text] [Related]
19. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. Zou G, Zhai G, Feng Q, Yan S, Wang A, Zhao Q, Shao J, Zhang Z, Zou J, Han B, Tao Y. J Exp Bot; 2012 Sep 05; 63(15):5451-62. PubMed ID: 22859680 [Abstract] [Full Text] [Related]
20. The Evolution of Photoperiod-Insensitive Flowering in Sorghum, A Genomic Model for Panicoid Grasses. Cuevas HE, Zhou C, Tang H, Khadke PP, Das S, Lin YR, Ge Z, Clemente T, Upadhyaya HD, Hash CT, Paterson AH. Mol Biol Evol; 2016 Sep 05; 33(9):2417-28. PubMed ID: 27335143 [Abstract] [Full Text] [Related] Page: [Next] [New Search]