These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1068 related items for PubMed ID: 29857913
1. Facilitation of hippocampal long-term potentiation and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking learning, memory, and the potential eradication of HIV-1. Finley J. Med Hypotheses; 2018 Jul; 116():61-73. PubMed ID: 29857913 [Abstract] [Full Text] [Related]
2. Oocyte activation and latent HIV-1 reactivation: AMPK as a common mechanism of action linking the beginnings of life and the potential eradication of HIV-1. Finley J. Med Hypotheses; 2016 Aug; 93():34-47. PubMed ID: 27372854 [Abstract] [Full Text] [Related]
3. Transposable elements, placental development, and oocyte activation: Cellular stress and AMPK links jumping genes with the creation of human life. Finley J. Med Hypotheses; 2018 Sep; 118():44-54. PubMed ID: 30037614 [Abstract] [Full Text] [Related]
4. Elimination of cancer stem cells and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking inhibition of tumorigenesis and the potential eradication of HIV-1. Finley J. Med Hypotheses; 2017 Jul; 104():133-146. PubMed ID: 28673572 [Abstract] [Full Text] [Related]
5. Cellular stress and AMPK links metformin and diverse compounds with accelerated emergence from anesthesia and potential recovery from disorders of consciousness. Finley J. Med Hypotheses; 2019 Mar; 124():42-52. PubMed ID: 30798915 [Abstract] [Full Text] [Related]
6. Reactivation of latently infected HIV-1 viral reservoirs and correction of aberrant alternative splicing in the LMNA gene via AMPK activation: Common mechanism of action linking HIV-1 latency and Hutchinson-Gilford progeria syndrome. Finley J. Med Hypotheses; 2015 Sep; 85(3):320-32. PubMed ID: 26115946 [Abstract] [Full Text] [Related]
7. Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome. Finley J. Med Hypotheses; 2018 Sep; 118():151-162. PubMed ID: 30037605 [Abstract] [Full Text] [Related]
8. Activation of Group II Metabotropic Glutamate Receptors Promotes LTP Induction at Schaffer Collateral-CA1 Pyramidal Cell Synapses by Priming NMDA Receptors. Rosenberg N, Gerber U, Ster J. J Neurosci; 2016 Nov 09; 36(45):11521-11531. PubMed ID: 27911756 [Abstract] [Full Text] [Related]
9. Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. MacDonald JF, Jackson MF, Beazely MA. Crit Rev Neurobiol; 2006 Nov 09; 18(1-2):71-84. PubMed ID: 17725510 [Abstract] [Full Text] [Related]
10. Synaptic strength at the temporoammonic input to the hippocampal CA1 region in vivo is regulated by NMDA receptors, metabotropic glutamate receptors and voltage-gated calcium channels. Aksoy-Aksel A, Manahan-Vaughan D. Neuroscience; 2015 Nov 19; 309():191-9. PubMed ID: 25791230 [Abstract] [Full Text] [Related]
12. Presynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus. Andrade-Talavera Y, Duque-Feria P, Paulsen O, Rodríguez-Moreno A. Cereb Cortex; 2016 Aug 19; 26(8):3637-3654. PubMed ID: 27282393 [Abstract] [Full Text] [Related]
13. Persistent activation of histamine H1 receptors in the hippocampal CA1 region enhances NMDA receptor-mediated synaptic excitation and long-term potentiation in astrocyte- and D-serine-dependent manner. Masuoka T, Ikeda R, Konishi S. Neuropharmacology; 2019 Jun 19; 151():64-73. PubMed ID: 30943384 [Abstract] [Full Text] [Related]
14. Postsynaptic expression of a new calcium pathway in hippocampal CA3 neurons and its influence on mossy fiber long-term potentiation. Kakegawa W, Yamada N, Iino M, Kameyama K, Umeda T, Tsuzuki K, Ozawa S. J Neurosci; 2002 Jun 01; 22(11):4312-20. PubMed ID: 12040036 [Abstract] [Full Text] [Related]
15. Acid-sensing ion channel 1a drives AMPA receptor plasticity following ischaemia and acidosis in hippocampal CA1 neurons. Quintana P, Soto D, Poirot O, Zonouzi M, Kellenberger S, Muller D, Chrast R, Cull-Candy SG. J Physiol; 2015 Oct 01; 593(19):4373-86. PubMed ID: 26174503 [Abstract] [Full Text] [Related]
16. 17β estradiol recruits GluN2B-containing NMDARs and ERK during induction of long-term potentiation at temporoammonic-CA1 synapses. Smith CC, Smith LA, Bredemann TM, McMahon LL. Hippocampus; 2016 Jan 01; 26(1):110-7. PubMed ID: 26190171 [Abstract] [Full Text] [Related]
17. Theta burst stimulation-induced LTP: Differences and similarities between the dorsal and ventral CA1 hippocampal synapses. Kouvaros S, Papatheodoropoulos C. Hippocampus; 2016 Dec 01; 26(12):1542-1559. PubMed ID: 27650481 [Abstract] [Full Text] [Related]
19. Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca2+-Permeable AMPA Receptors. Sanderson JL, Scott JD, Dell'Acqua ML. J Neurosci; 2018 Mar 14; 38(11):2863-2876. PubMed ID: 29440558 [Abstract] [Full Text] [Related]
20. Muscarinic Receptors, from Synaptic Plasticity to its Role in Network Activity. Fernández de Sevilla D, Núñez A, Buño W. Neuroscience; 2021 Feb 21; 456():60-70. PubMed ID: 32278062 [Abstract] [Full Text] [Related] Page: [Next] [New Search]