These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


787 related items for PubMed ID: 29858754

  • 21. Effect of dilute acid pretreatment severity on the bioconversion efficiency of Phalaris aquatica L. lignocellulosic biomass into fermentable sugars.
    Pappas IA, Koukoura Z, Tananaki C, Goulas C.
    Bioresour Technol; 2014 Aug; 166():395-402. PubMed ID: 24929811
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498.
    Gupta R, Sharma KK, Kuhad RC.
    Bioresour Technol; 2009 Feb; 100(3):1214-20. PubMed ID: 18835157
    [Abstract] [Full Text] [Related]

  • 24. Development of a novel sequential pretreatment strategy for the production of bioethanol from sugarcane trash.
    Raghavi S, Sindhu R, Binod P, Gnansounou E, Pandey A.
    Bioresour Technol; 2016 Jan; 199():202-210. PubMed ID: 26318846
    [Abstract] [Full Text] [Related]

  • 25. Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors.
    Lee JW, Jeffries TW.
    Bioresour Technol; 2011 May; 102(10):5884-90. PubMed ID: 21377872
    [Abstract] [Full Text] [Related]

  • 26. Characterization of oxalic acid pretreatment on lignocellulosic biomass using oxalic acid recovered by electrodialysis.
    Lee HJ, Seo YJ, Lee JW.
    Bioresour Technol; 2013 Apr; 133():87-91. PubMed ID: 23422303
    [Abstract] [Full Text] [Related]

  • 27. Bioethanol Production from Azolla filiculoides by Saccharomyces cerevisiae, Pichia stipitis, Candida lusitaniae, and Kluyveromyces marxianus.
    Chupaza MH, Park YR, Kim SH, Yang JW, Jeong GT, Kim SK.
    Appl Biochem Biotechnol; 2021 Feb; 193(2):502-514. PubMed ID: 33026615
    [Abstract] [Full Text] [Related]

  • 28. Bioethanol production from Lantana camara (red sage): Pretreatment, saccharification and fermentation.
    Kuhad RC, Gupta R, Khasa YP, Singh A.
    Bioresour Technol; 2010 Nov; 101(21):8348-54. PubMed ID: 20584600
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Optimization of ethanol production from microfluidized wheat straw by response surface methodology.
    Turhan O, Isci A, Mert B, Sakiyan O, Donmez S.
    Prep Biochem Biotechnol; 2015 Nov; 45(8):785-95. PubMed ID: 25181638
    [Abstract] [Full Text] [Related]

  • 33. Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid-base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae.
    Chandel AK, Antunes FA, Anjos V, Bell MJ, Rodrigues LN, Polikarpov I, de Azevedo ER, Bernardinelli OD, Rosa CA, Pagnocca FC, da Silva SS.
    Biotechnol Biofuels; 2014 Nov; 7():63. PubMed ID: 24739736
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Production of Bio-Ethanol by Integrating Microwave-Assisted Dilute Sulfuric Acid Pretreated Sugarcane Bagasse Slurry with Molasses.
    Yu N, Tan L, Sun ZY, Tang YQ, Kida K.
    Appl Biochem Biotechnol; 2018 May; 185(1):191-206. PubMed ID: 29101734
    [Abstract] [Full Text] [Related]

  • 37. Evaluation of pretreatment methods for enzymatic saccharification of wheat straw for bioethanol production.
    Govumoni SP, Koti S, Kothagouni SY, Venkateshwar S, Linga VR.
    Carbohydr Polym; 2013 Jan 16; 91(2):646-50. PubMed ID: 23121959
    [Abstract] [Full Text] [Related]

  • 38. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis.
    Yadav KS, Naseeruddin S, Prashanthi GS, Sateesh L, Rao LV.
    Bioresour Technol; 2011 Jun 16; 102(11):6473-8. PubMed ID: 21470850
    [Abstract] [Full Text] [Related]

  • 39. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.
    Ko JK, Um Y, Woo HM, Kim KH, Lee SM.
    Bioresour Technol; 2016 Jun 16; 209():290-6. PubMed ID: 26990396
    [Abstract] [Full Text] [Related]

  • 40. An analysis of feasibility of bioethanol production from Taiwan sorghum liquor waste.
    Su MY, Tzeng WS, Shyu YT.
    Bioresour Technol; 2010 Sep 16; 101(17):6669-75. PubMed ID: 20427178
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 40.