These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
187 related items for PubMed ID: 29859597
21. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve l-isoleucine production. Ma W, Wang J, Li Y, Hu X, Shi F, Wang X. Biotechnol Appl Biochem; 2016 Nov; 63(6):877-885. PubMed ID: 27010514 [Abstract] [Full Text] [Related]
22. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level. Li Y, Cong H, Liu B, Song J, Sun X, Zhang J, Yang Q. Antonie Van Leeuwenhoek; 2016 Sep; 109(9):1185-97. PubMed ID: 27255137 [Abstract] [Full Text] [Related]
23. Programming adaptive laboratory evolution of 4-hydroxyisoleucine production driven by a lysine biosensor in Corynebacterium glutamicum. Yu X, Shi F, Liu H, Tan S, Li Y. AMB Express; 2021 May 08; 11(1):66. PubMed ID: 33963930 [Abstract] [Full Text] [Related]
24. Establishment of CRISPR-Cpf1-assisted gene editing tool and engineering of 4-hydroxyisoleucine biosynthesis in Corynebacterium glutamicum. Chen R, Shi F, Xiang Y, Lai W, Ji G. World J Microbiol Biotechnol; 2023 Aug 01; 39(10):266. PubMed ID: 37524856 [Abstract] [Full Text] [Related]
25. [Characterization of recombinant L-isoleucine-4-hydroxylase from Bacillus thuringiensis and its application in 4hydroxyisoleucine biosynthesis]. Zhang C, Liu Y, Xue N, Wang X, Xie X, Xu Q, Chen N. Wei Sheng Wu Xue Bao; 2014 Aug 04; 54(8):889-96. PubMed ID: 25345020 [Abstract] [Full Text] [Related]
26. De Novo Engineering of Corynebacterium glutamicum for l-Proline Production. Zhang J, Qian F, Dong F, Wang Q, Yang J, Jiang Y, Yang S. ACS Synth Biol; 2020 Jul 17; 9(7):1897-1906. PubMed ID: 32627539 [Abstract] [Full Text] [Related]
27. Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. Jiang LY, Zhang YY, Li Z, Liu JZ. J Ind Microbiol Biotechnol; 2013 Oct 17; 40(10):1143-51. PubMed ID: 23836141 [Abstract] [Full Text] [Related]
28. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum. Feng J, Quan Y, Gu Y, Liu F, Huang X, Shen H, Dang Y, Cao M, Gao W, Lu X, Wang Y, Song C, Wang S. Microb Cell Fact; 2017 May 22; 16(1):88. PubMed ID: 28532451 [Abstract] [Full Text] [Related]
29. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Kim SY, Lee J, Lee SY. Biotechnol Bioeng; 2015 Feb 22; 112(2):416-21. PubMed ID: 25163446 [Abstract] [Full Text] [Related]
30. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Xu J, Han M, Zhang J, Guo Y, Zhang W. Amino Acids; 2014 Sep 22; 46(9):2165-75. PubMed ID: 24879631 [Abstract] [Full Text] [Related]
31. Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Schultz C, Niebisch A, Gebel L, Bott M. Appl Microbiol Biotechnol; 2007 Sep 22; 76(3):691-700. PubMed ID: 17437098 [Abstract] [Full Text] [Related]
32. Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production. Lai S, Zhang Y, Liu S, Liang Y, Shang X, Chai X, Wen T. Sci China Life Sci; 2012 Apr 22; 55(4):283-90. PubMed ID: 22566084 [Abstract] [Full Text] [Related]
33. Deciphering the crucial roles of AraC-type transcriptional regulator Cgl2680 on NADPH metabolism and L-lysine production in Corynebacterium glutamicum. Wang L, Yu H, Xu J, Ruan H, Zhang W. World J Microbiol Biotechnol; 2020 May 26; 36(6):82. PubMed ID: 32458148 [Abstract] [Full Text] [Related]
34. An NADPH-auxotrophic Corynebacterium glutamicum recombinant strain and used it to construct L-leucine high-yielding strain. Chen SL, Liu TS, Zhang WG, Xu JZ. Int Microbiol; 2023 Jan 26; 26(1):11-24. PubMed ID: 35925494 [Abstract] [Full Text] [Related]
35. Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Lindner SN, Niederholtmeyer H, Schmitz K, Schoberth SM, Wendisch VF. Appl Microbiol Biotechnol; 2010 Jun 26; 87(2):583-93. PubMed ID: 20180116 [Abstract] [Full Text] [Related]
36. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Komati Reddy G, Lindner SN, Wendisch VF. Appl Environ Microbiol; 2015 Mar 26; 81(6):1996-2005. PubMed ID: 25576602 [Abstract] [Full Text] [Related]
37. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum. Zhou Z, Wang C, Chen Y, Zhang K, Xu H, Cai H, Chen Z. Biotechnol Prog; 2015 Mar 26; 31(1):12-9. PubMed ID: 25311136 [Abstract] [Full Text] [Related]
38. Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum. Wu W, Zhang Y, Liu D, Chen Z. Metab Eng; 2019 Mar 26; 52():77-86. PubMed ID: 30458240 [Abstract] [Full Text] [Related]
39. Implication of gluconate kinase activity in L-ornithine biosynthesis in Corynebacterium glutamicum. Hwang GH, Cho JY. J Ind Microbiol Biotechnol; 2012 Dec 26; 39(12):1869-74. PubMed ID: 22987028 [Abstract] [Full Text] [Related]
40. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. Jiang LY, Chen SG, Zhang YY, Liu JZ. BMC Biotechnol; 2013 Jun 01; 13():47. PubMed ID: 23725060 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]