These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. "Outer-sphere to inner-sphere" redox cycling for ultrasensitive immunosensors. Akanda MR, Choe YL, Yang H. Anal Chem; 2012 Jan 17; 84(2):1049-55. PubMed ID: 22208164 [Abstract] [Full Text] [Related]
3. Glucose-oxidase label-based redox cycling for an incubation period-free electrochemical immunosensor. Singh A, Park S, Yang H. Anal Chem; 2013 May 21; 85(10):4863-8. PubMed ID: 23663141 [Abstract] [Full Text] [Related]
4. A Tyrosinase-Responsive Nonenzymatic Redox Cycling for Amplified Electrochemical Immunosensing of Protein. Akanda MR, Ju H. Anal Chem; 2016 Oct 04; 88(19):9856-9861. PubMed ID: 27595158 [Abstract] [Full Text] [Related]
5. An ultrasensitive and incubation-free electrochemical immunosensor using a gold-nanocatalyst label mediating outer-sphere-reaction-philic and inner-sphere-reaction-philic species. Fang CS, Oh KH, Oh A, Lee K, Park S, Kim S, Park JK, Yang H. Chem Commun (Camb); 2016 Apr 30; 52(34):5884-7. PubMed ID: 27052458 [Abstract] [Full Text] [Related]
6. An Integrated Redox Cycling for Electrochemical Enzymatic Signal Enhancement. Akanda MR, Ju H. Anal Chem; 2017 Dec 19; 89(24):13480-13486. PubMed ID: 29164851 [Abstract] [Full Text] [Related]
7. Electrochemical immunosensor using p-aminophenol redox cycling by hydrazine combined with a low background current. Das J, Jo K, Lee JW, Yang H. Anal Chem; 2007 Apr 01; 79(7):2790-6. PubMed ID: 17311407 [Abstract] [Full Text] [Related]
8. Sensitive electrochemical immunosensor via amide hydrolysis by DT-diaphorase combined with five redox-cycling reactions. Prayikaputri PU, Park S, Kim S, Yoon YH, Kim S, Yang H. Biosens Bioelectron; 2023 Mar 15; 224():115058. PubMed ID: 36630744 [Abstract] [Full Text] [Related]
9. Combined Signal Amplification Using a Propagating Cascade Reaction and a Redox Cycling Reaction for Sensitive Thyroid-Stimulating Hormone Detection. Park S, Kim J, Kim S, Kim G, Lee NS, Yoon YH, Yang H. Anal Chem; 2019 Jun 18; 91(12):7894-7901. PubMed ID: 31184125 [Abstract] [Full Text] [Related]
10. Optimization of phosphatase- and redox cycling-based immunosensors and its application to ultrasensitive detection of troponin I. Akanda MR, Aziz MA, Jo K, Tamilavan V, Hyun MH, Kim S, Yang H. Anal Chem; 2011 May 15; 83(10):3926-33. PubMed ID: 21486093 [Abstract] [Full Text] [Related]
11. Ru(NH3)63+/Ru(NH3)62+-Mediated Redox Cycling: Toward Enhanced Triple Signal Amplification for Photoelectrochemical Immunoassay. Wang B, Xu YT, Lv JL, Xue TY, Ren SW, Cao JT, Liu YM, Zhao WW. Anal Chem; 2019 Mar 19; 91(6):3768-3772. PubMed ID: 30789702 [Abstract] [Full Text] [Related]
12. An ultrasensitive enzyme-free electrochemical immunosensor based on redox cycling amplification using methylene blue. Dutta G, Lillehoj PB. Analyst; 2017 Sep 08; 142(18):3492-3499. PubMed ID: 28831485 [Abstract] [Full Text] [Related]
13. Ultrasensitive Detection of Parathyroid Hormone through Fast Silver Deposition Induced by Enzymatic Nitroso Reduction and Redox Cycling. Bhatia A, Nandhakumar P, Kim G, Kim J, Lee NS, Yoon YH, Yang H. ACS Sens; 2019 Jun 28; 4(6):1641-1647. PubMed ID: 31188576 [Abstract] [Full Text] [Related]
19. Simple and effective label-free electrochemical immunoassay for carbohydrate antigen 19-9 based on polythionine-Au composites as enhanced sensing signals for detecting different clinical samples. Huang Z, Jiang Z, Zhao C, Han W, Lin L, Liu A, Weng S, Lin X. Int J Nanomedicine; 2017 Feb 15; 12():3049-3058. PubMed ID: 28450781 [Abstract] [Full Text] [Related]
20. Sensitive electrochemical immunoassay of carcinoembryonic antigen with signal dual-amplification using glucose oxidase and an artificial catalase. Tang J, Tang D, Li Q, Su B, Qiu B, Chen G. Anal Chim Acta; 2011 Jul 04; 697(1-2):16-22. PubMed ID: 21641413 [Abstract] [Full Text] [Related] Page: [Next] [New Search]