These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


116 related items for PubMed ID: 2986410

  • 1. Cyclic GMP affects redox state and improves energy charge of ischaemic Langendorff-perfused rat heart.
    Laustiola K.
    Acta Pharmacol Toxicol (Copenh); 1985 Feb; 56(2):139-43. PubMed ID: 2986410
    [Abstract] [Full Text] [Related]

  • 2. The effects of cyclic AMP and cyclic GMP on redox state and energy state in hypoxic rat atria.
    Vuorinen P, Laustiola K, Metsä-Ketelä T.
    Life Sci; 1984 Jul 09; 35(2):155-61. PubMed ID: 6330484
    [Abstract] [Full Text] [Related]

  • 3. 8-Bromo cyclic GMP inhibits NADH and lactate accumulation in hypoxic rat atria.
    Laustiola K, Vuorinen P, Karp M, Vapaatalo H, Metsä-Ketelä T.
    Naunyn Schmiedebergs Arch Pharmacol; 1983 Aug 09; 323(4):361-3. PubMed ID: 6314154
    [Abstract] [Full Text] [Related]

  • 4. 8-bromo-cGMP improves energy state in hypoxic rat atria.
    Laustiola K, Vuorinen P, Metsä-Ketelä T.
    Acta Pharmacol Toxicol (Copenh); 1984 Jul 09; 55(1):21-4. PubMed ID: 6087617
    [Abstract] [Full Text] [Related]

  • 5. Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase.
    Hiltunen JK, Hassinen IE.
    Biochim Biophys Acta; 1976 Aug 13; 440(2):377-90. PubMed ID: 182244
    [Abstract] [Full Text] [Related]

  • 6. Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Near-complete prevention of reperfusion contractile failure.
    Bünger R, Mallet RT, Hartman DA.
    Eur J Biochem; 1989 Mar 01; 180(1):221-33. PubMed ID: 2707262
    [Abstract] [Full Text] [Related]

  • 7. The protective action of pyruvate on recovery of ischemic rat heart: comparison with other oxidizable substrates.
    Cavallini L, Valente M, Rigobello MP.
    J Mol Cell Cardiol; 1990 Feb 01; 22(2):143-54. PubMed ID: 2182887
    [Abstract] [Full Text] [Related]

  • 8. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW.
    Am J Physiol; 1995 Jan 01; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [Abstract] [Full Text] [Related]

  • 9. The nucleotide metabolism in lactate perfused hearts under ischaemic and reperfused conditions.
    de Groot MJ, Coumans WA, van der Vusse GJ.
    Mol Cell Biochem; 1992 Dec 02; 118(1):1-14. PubMed ID: 1488052
    [Abstract] [Full Text] [Related]

  • 10. Effect of redox potential on protein degradation in perfused rat heart.
    Chua BH, Kleinhans BJ.
    Am J Physiol; 1985 Jun 02; 248(6 Pt 1):E726-31. PubMed ID: 3890558
    [Abstract] [Full Text] [Related]

  • 11. [The effect of guanosyl-5'-monophosphate on metabolic processes in rats with experimental myocarditis].
    Prokopenko VM, Slobodskaia VV, Shapot EV, Eliseev VV.
    Vopr Med Khim; 1990 Jun 02; 36(5):68-9. PubMed ID: 2174588
    [Abstract] [Full Text] [Related]

  • 12. Glucose requirement for postischemic recovery of perfused working heart.
    Mallet RT, Hartman DA, Bünger R.
    Eur J Biochem; 1990 Mar 10; 188(2):481-93. PubMed ID: 2318214
    [Abstract] [Full Text] [Related]

  • 13. Substrate regulation of the nucleotide pool during regional ischaemia and reperfusion in an isolated rat heart preparation: a phosphorus-31 magnetic resonance spectroscopy analysis.
    Camacho SA, Parmley WW, James TL, Abe H, Wu ST, Botvinick EH, Watters TA, Schiller N, Sievers R, Wikman-Coffelt J.
    Cardiovasc Res; 1988 Mar 10; 22(3):193-203. PubMed ID: 3167943
    [Abstract] [Full Text] [Related]

  • 14. Contribution of tissue acidosis to ischemic injury in the perfused rat heart.
    Williamson JR, Schaffer SW, Ford C, Safer B.
    Circulation; 1976 Mar 10; 53(3 Suppl):I3-14. PubMed ID: 3293
    [Abstract] [Full Text] [Related]

  • 15. Effects of glucose, pyruvate, lactate, and amino acids on muscle protein synthesis.
    Hedden MP, Buse MG.
    Am J Physiol; 1982 Mar 10; 242(3):E184-92. PubMed ID: 7065176
    [Abstract] [Full Text] [Related]

  • 16. Use of the perfused rat heart to study cardiac metabolism: retrospective and prospective views.
    Williamson JR, Kobayashi K.
    Basic Res Cardiol; 1984 Mar 10; 79(3):283-91. PubMed ID: 6477381
    [No Abstract] [Full Text] [Related]

  • 17. Calcium-linked adjustment of myocardial metabolism to changing mechanical demands in the isolated rat heart.
    Rubányi G, Kovách AG.
    Acta Physiol Acad Sci Hung; 1980 Mar 10; 55(4):335-43. PubMed ID: 7468250
    [Abstract] [Full Text] [Related]

  • 18. Brain levels of NADH and NAD+ under hypoxic and hypoglycaemic conditions in vitro.
    Garofalo O, Cox DW, Bachelard HS.
    J Neurochem; 1988 Jul 10; 51(1):172-6. PubMed ID: 3379400
    [Abstract] [Full Text] [Related]

  • 19. Myocardial metabolism and heart disease.
    Opie LH.
    Jpn Circ J; 1978 Nov 10; 42(11):1223-47. PubMed ID: 34741
    [Abstract] [Full Text] [Related]

  • 20. Responsiveness to glucagon by isolated rat hepatocytes controlled by the redox state of the cytosolic nicotinamide--adenine dinucleotide couple acting on adenosine 3':5'-cyclic monophosphate phosphodiesterase.
    Clark MG, Jarrett IG.
    Biochem J; 1978 Dec 15; 176(3):805-16. PubMed ID: 218554
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.