These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


750 related items for PubMed ID: 29864964

  • 21. Trends in discovery of new drugs for tuberculosis therapy.
    Riccardi G, Pasca MR.
    J Antibiot (Tokyo); 2014 Sep; 67(9):655-9. PubMed ID: 25095807
    [Abstract] [Full Text] [Related]

  • 22. Mycobacterium tuberculosis topoisomerases and EthR as the targets for new anti-TB drugs development.
    Sawicki R, Ginalska G.
    Future Med Chem; 2019 Aug; 11(16):2193-2203. PubMed ID: 31538522
    [Abstract] [Full Text] [Related]

  • 23. Isoniazid derivatives and their anti-tubercular activity.
    Hu YQ, Zhang S, Zhao F, Gao C, Feng LS, Lv ZS, Xu Z, Wu X.
    Eur J Med Chem; 2017 Jun 16; 133():255-267. PubMed ID: 28390957
    [Abstract] [Full Text] [Related]

  • 24. Development of Mycobacterium tuberculosis whole cell screening hits as potential antituberculosis agents.
    Cooper CB.
    J Med Chem; 2013 Oct 24; 56(20):7755-60. PubMed ID: 23927683
    [Abstract] [Full Text] [Related]

  • 25. The challenge of new drug discovery for tuberculosis.
    Koul A, Arnoult E, Lounis N, Guillemont J, Andries K.
    Nature; 2011 Jan 27; 469(7331):483-90. PubMed ID: 21270886
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Nanotechnology in Tuberculosis: State of the Art and the Challenges Ahead.
    Grotz E, Tateosian N, Amiano N, Cagel M, Bernabeu E, Chiappetta DA, Moretton MA.
    Pharm Res; 2018 Sep 20; 35(11):213. PubMed ID: 30238168
    [Abstract] [Full Text] [Related]

  • 31. Current status and future trends in the diagnosis and treatment of drug-susceptible and multidrug-resistant tuberculosis.
    Ahmad S, Mokaddas E.
    J Infect Public Health; 2014 Sep 20; 7(2):75-91. PubMed ID: 24216518
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis.
    Sacchettini JC, Rubin EJ, Freundlich JS.
    Nat Rev Microbiol; 2008 Jan 20; 6(1):41-52. PubMed ID: 18079742
    [Abstract] [Full Text] [Related]

  • 35. Computational medicinal chemistry for rational drug design: Identification of novel chemical structures with potential anti-tuberculosis activity.
    Koseki Y, Aoki S.
    Curr Top Med Chem; 2014 Jan 20; 14(1):176-88. PubMed ID: 24236720
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Identification and validation of novel drug targets in Mycobacterium tuberculosis.
    Singh V, Mizrahi V.
    Drug Discov Today; 2017 Mar 20; 22(3):503-509. PubMed ID: 27649943
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. In silico approaches and chemical space of anti-P-type ATPase compounds for discovering new antituberculous drugs.
    Santos P, López-Vallejo F, Soto CY.
    Chem Biol Drug Des; 2017 Aug 20; 90(2):175-187. PubMed ID: 28111912
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 38.