These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
112 related items for PubMed ID: 29873345
1. SAXS characterization of the interactions among digested food compounds and the anti-oxidant and anti-inflammatory activities of the formed nanocomplexes. Yang Y, Wang X, Chen G, Zhou W, Zeng X, Hu B, Li Y, Huang Q. Food Funct; 2018 Jun 20; 9(6):3408-3418. PubMed ID: 29873345 [Abstract] [Full Text] [Related]
2. Cellular uptake and cytotoxicity of chitosan-caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Hu B, Ting Y, Zeng X, Huang Q. Carbohydr Polym; 2012 Jun 20; 89(2):362-70. PubMed ID: 24750731 [Abstract] [Full Text] [Related]
3. Antioxidant Nanocomplexes for Delivery of Epigallocatechin-3-gallate. Hu B, Ma F, Yang Y, Xie M, Zhang C, Xu Y, Zeng X. J Agric Food Chem; 2016 May 04; 64(17):3422-9. PubMed ID: 27064900 [Abstract] [Full Text] [Related]
5. Epigallocatechin-3-gallate inhibits interleukin-1beta-induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: suppression of nuclear factor kappaB activation by degradation of the inhibitor of nuclear factor kappaB. Singh R, Ahmed S, Islam N, Goldberg VM, Haqqi TM. Arthritis Rheum; 2002 Aug 04; 46(8):2079-86. PubMed ID: 12209512 [Abstract] [Full Text] [Related]
8. Inhibitory effect of chroman carboxamide on interleukin-6 expression in response to lipopolysaccharide by preventing nuclear factor-kappaB activation in macrophages. Kim BH, Lee KH, Chung EY, Chang YS, Lee H, Lee CK, Min KR, Kim Y. Eur J Pharmacol; 2006 Aug 14; 543(1-3):158-65. PubMed ID: 16797005 [Abstract] [Full Text] [Related]
9. Anti-inflammatory and anti-oxidant effect of Calea urticifolia lyophilized aqueous extract on lipopolysaccharide-stimulated RAW 264.7 macrophages. Torres-Rodríguez ML, García-Chávez E, Berhow M, de Mejia EG. J Ethnopharmacol; 2016 Jul 21; 188():266-74. PubMed ID: 27139571 [Abstract] [Full Text] [Related]
10. Gallic Acid-g-Chitosan Modulates Inflammatory Responses in LPS-Stimulated RAW264.7 Cells Via NF-κB, AP-1, and MAPK Pathways. Ahn CB, Jung WK, Park SJ, Kim YT, Kim WS, Je JY. Inflammation; 2016 Feb 21; 39(1):366-374. PubMed ID: 26412258 [Abstract] [Full Text] [Related]
12. Nauclea officinalis inhibits inflammation in LPS-mediated RAW 264.7 macrophages by suppressing the NF-κB signaling pathway. Zhai XT, Zhang ZY, Jiang CH, Chen JQ, Ye JQ, Jia XB, Yang Y, Ni Q, Wang SX, Song J, Zhu FX. J Ethnopharmacol; 2016 May 13; 183():159-165. PubMed ID: 26806575 [Abstract] [Full Text] [Related]
14. Spiranthes sinensis Suppresses Production of Pro-Inflammatory Mediators by Down-Regulating the NF-κB Signaling Pathway and Up-Regulating HO-1/Nrf2 Anti-Oxidant Protein. Shie PH, Huang SS, Deng JS, Huang GJ. Am J Chin Med; 2015 May 13; 43(5):969-89. PubMed ID: 26224027 [Abstract] [Full Text] [Related]
15. Chikusetsusaponin IVa Methyl Ester Isolated from the Roots of Achyranthes japonica Suppresses LPS-Induced iNOS, TNF-α, IL-6, and IL-1β Expression by NF-κB and AP-1 Inactivation. Lee HJ, Shin JS, Lee WS, Shim HY, Park JM, Jang DS, Lee KT. Biol Pharm Bull; 2016 May 13; 39(5):657-64. PubMed ID: 27150139 [Abstract] [Full Text] [Related]