These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
243 related items for PubMed ID: 29881963
1. Exogenously applied zinc and copper mitigate salinity effect in maize (Zea mays L.) by improving key physiological and biochemical attributes. Iqbal MN, Rasheed R, Ashraf MY, Ashraf MA, Hussain I. Environ Sci Pollut Res Int; 2018 Aug; 25(24):23883-23896. PubMed ID: 29881963 [Abstract] [Full Text] [Related]
3. Exogenous 2-(3,4-Dichlorophenoxy) triethylamine alleviates salinity stress in maize by enhancing photosynthetic capacity, improving water status and maintaining K+/Na+ homeostasis. Li L, Gu W, Zhang L, Li C, Chen X, Qian C, Wang Z, Li W, Zuo S, Wei S. BMC Plant Biol; 2020 Jul 23; 20(1):348. PubMed ID: 32703161 [Abstract] [Full Text] [Related]
4. Physiological and biochemical attributes of Mentha spicata when subjected to saline conditions and cation foliar application. Chrysargyris A, Solomou M, Petropoulos SA, Tzortzakis N. J Plant Physiol; 2019 Jan 23; 232():27-38. PubMed ID: 30530201 [Abstract] [Full Text] [Related]
7. Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Sofy MR, Elhawat N, Tarek Alshaal. Ecotoxicol Environ Saf; 2020 Sep 01; 200():110732. PubMed ID: 32460049 [Abstract] [Full Text] [Related]
10. Role of xylo-oligosaccharides in protection against salinity-induced adversities in Chinese cabbage. Chen W, Guo C, Hussain S, Zhu B, Deng F, Xue Y, Geng M, Wu L. Environ Sci Pollut Res Int; 2016 Jan 01; 23(2):1254-64. PubMed ID: 26358207 [Abstract] [Full Text] [Related]
11. Exogenous application of 5-NGS increased osmotic stress resistance by improving leaf photosynthetic physiology and antioxidant capacity in maize. Yang D, Gao Z, Liu Y, Li Q, Yang J, Wang Y, Wang M, Xie T, Zhang M, Sun H. PeerJ; 2024 Jan 01; 12():e17474. PubMed ID: 38818454 [Abstract] [Full Text] [Related]
12. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. Guo R, Shi L, Yan C, Zhong X, Gu F, Liu Q, Xia X, Li H. BMC Plant Biol; 2017 Feb 10; 17(1):41. PubMed ID: 28187710 [Abstract] [Full Text] [Related]
13. Comparative analysis of salinity tolerance mechanisms in two maize genotypes: growth performance, ion regulation, and antioxidant responses. Rizk MS, Assaha DVM, Mekawy AMM, Shalaby NE, Ramadan EA, El-Tahan AM, Ibrahim OM, Metwelly HIF, Okla MK, Maridueña-Zavala MG, AbdElgawad H, Ueda A. BMC Plant Biol; 2024 Aug 30; 24(1):818. PubMed ID: 39215238 [Abstract] [Full Text] [Related]
14. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D. Sci Rep; 2017 Feb 07; 7():42039. PubMed ID: 28169318 [Abstract] [Full Text] [Related]
16. Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. Sheteiwy MS, Shao H, Qi W, Daly P, Sharma A, Shaghaleh H, Hamoud YA, El-Esawi MA, Pan R, Wan Q, Lu H. J Sci Food Agric; 2021 Mar 30; 101(5):2027-2041. PubMed ID: 32949013 [Abstract] [Full Text] [Related]
17. Exogenously Applied Gibberellic Acid Enhances Growth and Salinity Stress Tolerance of Maize through Modulating the Morpho-Physiological, Biochemical and Molecular Attributes. Shahzad K, Hussain S, Arfan M, Hussain S, Waraich EA, Zamir S, Saddique M, Rauf A, Kamal KY, Hano C, El-Esawi MA. Biomolecules; 2021 Jul 09; 11(7):. PubMed ID: 34356629 [Abstract] [Full Text] [Related]