These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 29894517

  • 1. A new method for predicting essential proteins based on participation degree in protein complex and subgraph density.
    Lei X, Yang X.
    PLoS One; 2018; 13(6):e0198998. PubMed ID: 29894517
    [Abstract] [Full Text] [Related]

  • 2. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.
    Luo J, Qi Y.
    PLoS One; 2015; 10(6):e0131418. PubMed ID: 26125187
    [Abstract] [Full Text] [Related]

  • 3. A New Method for Identifying Essential Proteins Based on Network Topology Properties and Protein Complexes.
    Qin C, Sun Y, Dong Y.
    PLoS One; 2016; 11(8):e0161042. PubMed ID: 27529423
    [Abstract] [Full Text] [Related]

  • 4. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.
    Li M, Li W, Wu FX, Pan Y, Wang J.
    J Theor Biol; 2018 Jun 14; 447():65-73. PubMed ID: 29571709
    [Abstract] [Full Text] [Related]

  • 5. A local average connectivity-based method for identifying essential proteins from the network level.
    Li M, Wang J, Chen X, Wang H, Pan Y.
    Comput Biol Chem; 2011 Jun 14; 35(3):143-50. PubMed ID: 21704260
    [Abstract] [Full Text] [Related]

  • 6. A novel essential protein identification method based on PPI networks and gene expression data.
    Zhong J, Tang C, Peng W, Xie M, Sun Y, Tang Q, Xiao Q, Yang J.
    BMC Bioinformatics; 2021 May 13; 22(1):248. PubMed ID: 33985429
    [Abstract] [Full Text] [Related]

  • 7. A new method for the discovery of essential proteins.
    Zhang X, Xu J, Xiao WX.
    PLoS One; 2013 May 13; 8(3):e58763. PubMed ID: 23555595
    [Abstract] [Full Text] [Related]

  • 8. Prediction of essential proteins based on overlapping essential modules.
    Zhao B, Wang J, Li M, Wu FX, Pan Y.
    IEEE Trans Nanobioscience; 2014 Dec 13; 13(4):415-24. PubMed ID: 25122840
    [Abstract] [Full Text] [Related]

  • 9. Identification of essential proteins based on edge features and the fusion of multiple-source biological information.
    Liu P, Liu C, Mao Y, Guo J, Liu F, Cai W, Zhao F.
    BMC Bioinformatics; 2023 May 17; 24(1):203. PubMed ID: 37198530
    [Abstract] [Full Text] [Related]

  • 10. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data.
    Li M, Zhang H, Wang JX, Pan Y.
    BMC Syst Biol; 2012 Mar 10; 6():15. PubMed ID: 22405054
    [Abstract] [Full Text] [Related]

  • 11. Detecting Protein Complexes Based on Uncertain Graph Model.
    Zhao B, Wang J, Li M, Wu FX, Pan Y.
    IEEE/ACM Trans Comput Biol Bioinform; 2014 Mar 10; 11(3):486-97. PubMed ID: 26356017
    [Abstract] [Full Text] [Related]

  • 12. Construction of Refined Protein Interaction Network for Predicting Essential Proteins.
    Li M, Ni P, Chen X, Wang J, Wu FX, Pan Y.
    IEEE/ACM Trans Comput Biol Bioinform; 2019 Mar 10; 16(4):1386-1397. PubMed ID: 28186903
    [Abstract] [Full Text] [Related]

  • 13. United Neighborhood Closeness Centrality and Orthology for Predicting Essential Proteins.
    Li G, Li M, Wang J, Li Y, Pan Y.
    IEEE/ACM Trans Comput Biol Bioinform; 2020 Mar 10; 17(4):1451-1458. PubMed ID: 30596582
    [Abstract] [Full Text] [Related]

  • 14. A protein network refinement method based on module discovery and biological information.
    Pan L, Wang H, Yang B, Li W.
    BMC Bioinformatics; 2024 Apr 20; 25(1):157. PubMed ID: 38643108
    [Abstract] [Full Text] [Related]

  • 15. An iteration method for identifying yeast essential proteins from heterogeneous network.
    Zhao B, Zhao Y, Zhang X, Zhang Z, Zhang F, Wang L.
    BMC Bioinformatics; 2019 Jun 24; 20(1):355. PubMed ID: 31234779
    [Abstract] [Full Text] [Related]

  • 16. Prediction of essential proteins based on subcellular localization and gene expression correlation.
    Fan Y, Tang X, Hu X, Wu W, Ping Q.
    BMC Bioinformatics; 2017 Dec 01; 18(Suppl 13):470. PubMed ID: 29219067
    [Abstract] [Full Text] [Related]

  • 17. Effective identification of essential proteins based on priori knowledge, network topology and gene expressions.
    Li M, Zheng R, Zhang H, Wang J, Pan Y.
    Methods; 2014 Jun 01; 67(3):325-33. PubMed ID: 24565748
    [Abstract] [Full Text] [Related]

  • 18. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks.
    Ou-Yang L, Yan H, Zhang XF.
    BMC Bioinformatics; 2017 Dec 01; 18(Suppl 13):463. PubMed ID: 29219066
    [Abstract] [Full Text] [Related]

  • 19. Prediction of Essential Proteins Based on Local Interaction Density.
    Qi Y, Luo J.
    IEEE/ACM Trans Comput Biol Bioinform; 2016 Dec 01; 13(6):1170-1182. PubMed ID: 26701891
    [Abstract] [Full Text] [Related]

  • 20. A Topology Potential-Based Method for Identifying Essential Proteins from PPI Networks.
    Li M, Lu Y, Wang J, Wu FX, Pan Y.
    IEEE/ACM Trans Comput Biol Bioinform; 2015 Dec 01; 12(2):372-83. PubMed ID: 26357224
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.