These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
180 related items for PubMed ID: 29896854
41. Pre-alcoholic fermentation acidification of red grape must using Lactobacillus plantarum. Onetto CA, Bordeu E. Antonie Van Leeuwenhoek; 2015 Dec; 108(6):1469-1475. PubMed ID: 26437637 [Abstract] [Full Text] [Related]
42. Efficient production of L-lactic acid by Crabtree-negative yeast Candida boidinii. Osawa F, Fujii T, Nishida T, Tada N, Ohnishi T, Kobayashi O, Komeda T, Yoshida S. Yeast; 2009 Sep; 26(9):485-96. PubMed ID: 19655300 [Abstract] [Full Text] [Related]
43. Identification of yeast and bacteria involved in the mezcal fermentation of Agave salmiana. Escalante-Minakata P, Blaschek HP, Barba de la Rosa AP, Santos L, De León-Rodríguez A. Lett Appl Microbiol; 2008 Jun; 46(6):626-30. PubMed ID: 18489025 [Abstract] [Full Text] [Related]
45. Domesticating a food spoilage yeast into an organic acid-tolerant metabolic engineering host: Lactic acid production by engineered Zygosaccharomyces bailii. Kuanyshev N, Rao CV, Dien B, Jin YS. Biotechnol Bioeng; 2021 Jan; 118(1):372-382. PubMed ID: 33030791 [Abstract] [Full Text] [Related]
46. Isolation, identification, and tolerance analysis of yeast during the natural fermentation process of Sidamo coffee beans. Ying BB, Cai J, Gao X, Zhang LF, Xu QF, Xu QH, Liu WL, Huang XM, Wang YC, Zhu L. Arch Microbiol; 2024 May 28; 206(6):279. PubMed ID: 38805051 [Abstract] [Full Text] [Related]
47. Efficient production of L-Lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene. Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T, Kitamoto K, Takahashi H. Appl Environ Microbiol; 2005 Apr 28; 71(4):1964-70. PubMed ID: 15812027 [Abstract] [Full Text] [Related]
48. Yeast diversity of Ghanaian cocoa bean heap fermentations. Daniel HM, Vrancken G, Takrama JF, Camu N, De Vos P, De Vuyst L. FEMS Yeast Res; 2009 Aug 28; 9(5):774-83. PubMed ID: 19473277 [Abstract] [Full Text] [Related]
49. Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo L-(+)-lactic acid. Abdel-Rahman MA, Tashiro Y, Zendo T, Shibata K, Sonomoto K. Appl Microbiol Biotechnol; 2011 Feb 28; 89(4):1039-49. PubMed ID: 21061005 [Abstract] [Full Text] [Related]
50. Effect of carbon sources on the growth and ethanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice. Díaz-Nava LE, Montes-Garcia N, Domínguez JM, Aguilar-Uscanga MG. Bioprocess Biosyst Eng; 2017 Jul 28; 40(7):1069-1077. PubMed ID: 28447168 [Abstract] [Full Text] [Related]
51. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae. Turner TL, Zhang GC, Oh EJ, Subramaniam V, Adiputra A, Subramaniam V, Skory CD, Jang JY, Yu BJ, Park I, Jin YS. Biotechnol Bioeng; 2016 May 28; 113(5):1075-83. PubMed ID: 26524688 [Abstract] [Full Text] [Related]
52. Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Porro D, Bianchi MM, Brambilla L, Menghini R, Bolzani D, Carrera V, Lievense J, Liu CL, Ranzi BM, Frontali L, Alberghina L. Appl Environ Microbiol; 1999 Sep 28; 65(9):4211-5. PubMed ID: 10473436 [Abstract] [Full Text] [Related]
53. High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Techaparin A, Thanonkeo P, Klanrit P. Braz J Microbiol; 2017 Sep 28; 48(3):461-475. PubMed ID: 28365094 [Abstract] [Full Text] [Related]
54. Isolation and molecular identification of lactic acid bacteria from King grass and their application to improve the fermentation quality of sweet Sorghum. Shah AA, Xianjun Y, Zhihao D, Junfeng L, Shao T. World J Microbiol Biotechnol; 2017 Dec 04; 34(1):4. PubMed ID: 29204819 [Abstract] [Full Text] [Related]
55. Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect. Lu H, Zhao X, Wang Y, Ding X, Wang J, Garza E, Manow R, Iverson A, Zhou S. BMC Biotechnol; 2016 Feb 19; 16():19. PubMed ID: 26895857 [Abstract] [Full Text] [Related]
56. Bioconversion of hemicellulosic materials into ethanol by yeast, Pichia kudriavzevii 2-KLP1, isolated from industrial waste. Elahi A, Rehman A. Rev Argent Microbiol; 2018 Feb 19; 50(4):417-425. PubMed ID: 29336910 [Abstract] [Full Text] [Related]
57. Selection and characterization of a Patagonian Pichia kudriavzevii for wine deacidification. Del Mónaco SM, Barda NB, Rubio NC, Caballero AC. J Appl Microbiol; 2014 Aug 19; 117(2):451-64. PubMed ID: 24844932 [Abstract] [Full Text] [Related]
58. Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing. Di Cagno R, Cardinali G, Minervini G, Antonielli L, Rizzello CG, Ricciuti P, Gobbetti M. Food Microbiol; 2010 May 19; 27(3):381-9. PubMed ID: 20227603 [Abstract] [Full Text] [Related]
59. Homo-D-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Yoshida S, Okano K, Tanaka T, Ogino C, Kondo A. Appl Microbiol Biotechnol; 2011 Oct 19; 92(1):67-76. PubMed ID: 21643702 [Abstract] [Full Text] [Related]